Skip to main content

Quantitative Profiling of Endogenous Metabolites Using Hydrophilic Interaction Liquid Chromatography–Tandem Mass Spectrometry (HILIC-MS/MS)

  • Protocol
  • First Online:
Book cover Microbial Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1859))

Abstract

Dynamic modeling of metabolic reaction networks requires absolute quantification of intracellular and extracellular metabolite concentrations with high precision and accuracy. This chapter presents a robust HILIC-ESI-MS/MS procedure for targeted quantitative profiling of more than 50 polar key metabolites in multicomponent endogenous extracts. Without using ion-pairing-agents or prior derivatization protocols, organic acids, amino acids, sugar phosphates, coenzymes, and nucleotides are measured on a triple quadrupole platform in positive and negative electrospray ionization modes with preoptimized MRM transitions. Robust polymer-based zwitterionic stationary phases (ZIC®-pHILIC) support alkaline mobile phase conditions (pH 9.2) for enhancing retention and chromatographic performance of polar analytes in bicratic elution mode without unfavourable column bleed. The quality of the method was extensively validated and demonstrated by absolute metabolite quantification in endogenous Escherichia coli extracts by comparative use of standard-based external calibration, isotope dilution, and standard addition as quantification strategies. In sum, alkaline ZIC®-pHILIC chromatography emerged as an efficient approach providing high selectivity and sensitivity for comprehensive metabolic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oldiges M, Lütz S, Pflug S, Schroer K, Stein N, Wiendahl C (2007) Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biotechnol 76:495–511

    Article  CAS  Google Scholar 

  2. Fei F, Bowdish DM, McCarry BE (2014) Comprehensive and simultaneous coverage of lipid and polar metabolites for endogenous cellular metabolomics using HILIC-TOF-MS. Anal Bioanal Chem 406:3723–3733

    Article  CAS  Google Scholar 

  3. Oldiges M, Takors R (2005) Applying metabolic profiling techniques for stimulus-response experiments: chances and pitfalls. Adv Biochem Eng Biotechnol 92:173–196

    CAS  PubMed  Google Scholar 

  4. Magnus JB, Oldiges M, Takors R (2009) The identification of enzyme targets for the optimization of a valine producing Corynebacterium glutamicum strain using a kinetic model. Biotechnol Prog 25:754–762

    Article  CAS  Google Scholar 

  5. Dunn WB, Bailey NJ (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625

    Article  CAS  Google Scholar 

  6. Teleki A, Sánchez-Kopper A, Takors R (2015) Alkaline conditions in hydrophilic interaction liquid chromatography for intracellular metabolite quantification using tandem mass spectrometry. Anal Biochem 475:4–13

    Article  CAS  Google Scholar 

  7. Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24:285–294

    Article  CAS  Google Scholar 

  8. Mashego MR, Rumbold K (2007) Microbial metabolomics: past, present and future methodologies. Biotechnol Lett 29:1–16

    Article  CAS  Google Scholar 

  9. Griffin JL, Williams HJ, Sang E, Clarke K, Rae C, Nicholson JK (2001) Metabolic profiling of genetic disorders: a multitissue H-1 nuclear magnetic resonance spectroscopic and pattern recognition study into dystrophic tissue. Anal Biochem 293:16–21

    Article  CAS  Google Scholar 

  10. Dell'mour M, Jaitz L, Oburger E, Puschenreiter M, Koellensperger G, Hann S (2010) Hydrophilic interaction LC combined with electrospray MS for highly sensitiveanalysis of underivatized amino acids in rhizosphere research. J Sep Sci 33:911–922

    Article  CAS  Google Scholar 

  11. Kvitvang HF, Andreassen T, Adam T, Villas-Bôas SG, Bruheim P (2011) Highly sensitive GC/MS/MS method for quantitation of amino and nonamino organic acids. Anal Chem 83:2705–2711

    Article  CAS  Google Scholar 

  12. Ramautar R, Somsen GW, de Jong GJ (2013) CE-MS for metabolomics: developments and applications in the period 2010−2012. Electrophoresis 34:86–98

    Article  CAS  Google Scholar 

  13. Lane AN, Fan TW, Higashi RM (2008) Isotopomer-based metabolomic analysis by NMR and mass spectrometry. Methods Cell Biol 84:541–588

    Article  CAS  Google Scholar 

  14. Edwards JL, Chisolm CN, Shackman JG, Kennedy RT (2006) Negative mode sheathless capillary electrophoresis electrospray ionization-mass spectrometry for metabolite analysis of prokaryotes. J Chromatogr A 1106:80–88

    Article  CAS  Google Scholar 

  15. Vielhauer O, Zakhartsev M, Horn T, Takors R, Reuss M (2011) Simplified absolute metabolite quantification by gas chromatography-isotope dilution mass spectrometry on the basis of commercially available source material. J Chromatogr B 879:3859–3870

    Article  CAS  Google Scholar 

  16. Nguyen HP, Schug KA (2008) The advantages of ESI-MS detection in conjunction with HILIC mode separations: fundamentals and applications. J Sep Sci 31:1465–1480

    Article  CAS  Google Scholar 

  17. Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem 402:231–247

    Article  CAS  Google Scholar 

  18. Preinerstorfer B, Schiesel S, Lämmerhofer M, Lindner W (2010) Metabolic profiling of intracellular metabolites in fermentation broths from beta-lactam antibiotics production by liquid chromatography-tandem mass spectrometry methods. J Chromatogr A 1217:312–328

    Article  CAS  Google Scholar 

  19. Nguyen HP, Yang SH, Wigginton JG, Simpkins JW, Schug KA (2010) Retention behavior of estrogen metabolites on hydrophilic interaction chromatography stationary phases. J Sep Sci 33:793–802

    Article  CAS  Google Scholar 

  20. Plassmeier J, Barsch A (2007) Investigation of central carbon metabolism and the 2-methylcitrate cycle in Corynebacterium glutamicum by metabolic profiling using gas chromatography-mass spectrometry. J Biotechnol 130:354–363

    Article  CAS  Google Scholar 

  21. Bolten CJ, Kiefer P, Letisse F, Portais JC, Wittmann C (2007) Sampling for metabolome analysis of microorganisms. Anal Chem 79:3843–389O

    Article  CAS  Google Scholar 

  22. Merck-Sequant (2008) A practical guide to HILIC – including ZIC®-HILIC applications, 5th edn. Merck-Sequant, Umea

    Google Scholar 

  23. Kiefer P, Portais JC, Vorholt JA (2008) Quantitative metabolome analysis using liquid chromatography-high-resolution mass spectrometry. Anal Biochem 382:94–100

    Article  CAS  Google Scholar 

  24. Mashego MR, Wu L, van Dam JC, Ras C, Vinke JL, van Winden WA, van Gulik WM, Heijnen JJ (2004) MIRACLE: mass isotopomer ratio analysis of U-13C-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol Bioeng 85:620–628

    Article  CAS  Google Scholar 

  25. Wang L, Zhou YJ, Ji D, Zhao ZK (2013) An accurate method for estimation of the intracellular aqueous volume of Escherichia coli cells. J Microbiol Methods 93:73–76

    Article  Google Scholar 

  26. Pesek JJ, Matyska MT, Fischer SM (2011) Improvement of peak shape in aqueous normal phase analysis of anionic metabolites. J Sep Sci 34:3509–3516

    Article  CAS  Google Scholar 

  27. Teleki A, Rahnert M, Bungart O, Gann B, Ochrombel I, Takors R (2017) Robust identification of metabolic control for microbial l-methionine production following an easy-to-use puristic approach. Metab Eng 41:159–172

    Article  CAS  Google Scholar 

  28. de Koning W, van Dam K (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 204:118–123

    Article  Google Scholar 

  29. Mansoori BA, Volmer DA, Boyd RK (1997) “Wrong-way-round” electrospray ionization of amino acids. Rapid Commun Mass Spectrom 11:1120–1130

    Article  CAS  Google Scholar 

  30. Wells G, Prest H, Russ CW IV (2011) Technical note: signal, noise, and detection limits in mass spectrometry. Agilent Technologies, Santa Clara, CA 5990-7651EN

    Google Scholar 

  31. Hiller J, Franco-Lara E, Weuster-Botz D (2007) Metabolic profiling of Escherichia coli cultivations: evaluation of extraction and metabolite analysis procedures. Biotechnol Lett 29:1169–1178

    Article  CAS  Google Scholar 

  32. Yuan J, Fowler WU, Kimball E, Lu W, Rabinowitz JD (2006) Kinetic flux profiling of nitrogen assimilation in Escherichia coli. Nat Chem Biol 2:529–530

    Article  CAS  Google Scholar 

  33. Bennett BD, Kimball EH, Gao M, Osterhout R, van Dien SJ, Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5:593–599

    Article  CAS  Google Scholar 

  34. Buchholz A, Takors R, Wandrey C (2001) Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Anal Biochem 295:129–137

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was funded by the Bundesministerium für Bildung und Forschung (grant number: 0315867, BMBF, Berlin, Germany) in cooperation with Evonik Industries AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Takors .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Teleki, A., Takors, R. (2019). Quantitative Profiling of Endogenous Metabolites Using Hydrophilic Interaction Liquid Chromatography–Tandem Mass Spectrometry (HILIC-MS/MS). In: Baidoo, E. (eds) Microbial Metabolomics. Methods in Molecular Biology, vol 1859. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8757-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8757-3_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8756-6

  • Online ISBN: 978-1-4939-8757-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics