Skip to main content

Analysis of Cytokine- and Influenza A Virus-Driven RIPK3 Necrosome Formation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1857))

Abstract

In multicellular organisms, regulated cell death plays a vital role in development, adult tissue homeostasis, and clearance of damaged or infected cells. Necroptosis is one such form of regulated cell death, characterized by its reliance on receptor-interacting protein kinase 3 (RIPK3). Once activated, RIPK3 nucleates a protein complex, termed the “necrosome,” which includes the adaptors RIPK1 and FADD, and the effector protein MLKL. From the necrosome, RIPK3 phosphorylates MLKL to drive necroptosis, and can also induce RIPK1/FADD-mediated apoptosis, via caspase-8. Assembly of the necrosome thus serves as a useful readout of RIPK3 activation. In this chapter, we describe molecular methods for examining necrosome activation in response to the cytokines TNF-α, IFN-β, and IFN-γ, and upon infection with influenza A virus (IAV).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Moriwaki K, Chan FK (2013) RIP3: a molecular switch for necrosis and inflammation. Genes Dev 27(15):1640–1649. https://doi.org/10.1101/gad.223321.113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714. https://doi.org/10.1038/nrm2970

    Article  PubMed  CAS  Google Scholar 

  3. McComb S, Cessford E, Alturki NA, Joseph J, Shutinoski B, Startek JB, Gamero AM, Mossman KL, Sad S (2014) Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages. Proc Natl Acad Sci U S A 111(31):E3206–E3213. https://doi.org/10.1073/pnas.1407068111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Thapa RJ, Nogusa S, Chen P, Maki JL, Lerro A, Andrake M, Rall GF, Degterev A, Balachandran S (2013) Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc Natl Acad Sci U S A 110(33):E3109–E3118. https://doi.org/10.1073/pnas.1301218110

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mocarski ES, Kaiser WJ, Livingston-Rosanoff D, Upton JW, Daley-Bauer LP (2014) True grit: programmed necrosis in antiviral host defense, inflammation, and immunogenicity. J Immunol 192(5):2019–2026. https://doi.org/10.4049/jimmunol.1302426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Sridharan H, Upton JW (2014) Programmed necrosis in microbial pathogenesis. Trends Microbiol 22(4):199–207. https://doi.org/10.1016/j.tim.2014.01.005

    Article  PubMed  CAS  Google Scholar 

  7. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517(7534):311–320. https://doi.org/10.1038/nature14191

    Article  PubMed  CAS  Google Scholar 

  8. He S, Liang Y, Shao F, Wang X (2011) Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci U S A 108(50):20054–20059. https://doi.org/10.1073/pnas.1116302108

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sun X, Yin J, Starovasnik MA, Fairbrother WJ, Dixit VM (2002) Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J Biol Chem 277(11):9505–9511. https://doi.org/10.1074/jbc.M109488200

    Article  PubMed  CAS  Google Scholar 

  10. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137(6):1112–1123. https://doi.org/10.1016/j.cell.2009.05.037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wallach D, Kang TB, Dillon CP, Green DR (2016) Programmed necrosis in inflammation: toward identification of the effector molecules. Science 352(6281):aaf2154. https://doi.org/10.1126/science.aaf2154

    Article  PubMed  CAS  Google Scholar 

  12. Zhang J, Yang Y, He W, Sun L (2016) Necrosome core machinery: MLKL. Cell Mol Life Sci 73(11–12):2153–2163. https://doi.org/10.1007/s00018-016-2190-5

    Article  PubMed  CAS  Google Scholar 

  13. Sun L, Wang X (2014) A new kind of cell suicide: mechanisms and functions of programmed necrosis. Trends Biochem Sci 39(12):587–593. https://doi.org/10.1016/j.tibs.2014.10.003

    Article  PubMed  CAS  Google Scholar 

  14. Nogusa S, Thapa RJ, Dillon CP, Liedmann S, Oguin TH 3rd, Ingram JP, Rodriguez DA, Kosoff R, Sharma S, Sturm O, Verbist K, Gough PJ, Bertin J, Hartmann BM, Sealfon SC, Kaiser WJ, Mocarski ES, Lopez CB, Thomas PG, Oberst A, Green DR, Balachandran S (2016) RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza a virus. Cell Host Microbe 20(1):13–24. https://doi.org/10.1016/j.chom.2016.05.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Chen P, Nogusa S, Thapa RJ, Shaller C, Simmons H, Peri S, Adams GP, Balachandran S (2013) Anti-CD70 immunocytokines for exploitation of interferon-gamma-induced RIP1-dependent necrosis in renal cell carcinoma. PLoS One 8(4):e61446. https://doi.org/10.1371/journal.pone.0061446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Conner DA (2001) Mouse embryo fibroblast (MEF) feeder cell preparation. Curr Protoc Mol Biol Chapter 23:Unit 23 22. doi:https://doi.org/10.1002/0471142727.mb2302s51

  17. Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG (2000) A DNA transfection system for generation of influenza a virus from eight plasmids. Proc Natl Acad Sci U S A 97(11):6108–6113. https://doi.org/10.1073/pnas.100133697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddharth Balachandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thapa, R.J., Nogusa, S., Balachandran, S. (2018). Analysis of Cytokine- and Influenza A Virus-Driven RIPK3 Necrosome Formation. In: Ting, A. (eds) Programmed Necrosis. Methods in Molecular Biology, vol 1857. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8754-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8754-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8753-5

  • Online ISBN: 978-1-4939-8754-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics