Skip to main content

Effects of Dietary Nutrients on Epigenetic Changes in Cancer

  • Protocol
  • First Online:
Cancer Epigenetics for Precision Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1856))

Abstract

Gene–nutrient interactions are important contributors to health management and disease prevention. Nutrition can alter gene expression, as well as the susceptibility to disease, including cancer, through epigenetic changes. Nutrients can influence the epigenetic status through several mechanisms, such as DNA methylation, histone modifications, and miRNA-dependent gene silencing. These alterations were associated with either increased or decreased risk for cancer development. There is convincing evidence indicating that several foods have protective roles in cancer prevention, by inhibiting tumor progression directly or through modifying tumor’s microenvironment that leads to hostile conditions favorable to tumor initiation or growth. While nutritional intakes from foods cannot be adequately controlled for dosage, the role of nutrients in the epigenetics of cancer has led to more research aimed at developing nutriceuticals and drugs as cancer therapies. Clinical studies are needed to evaluate the optimum doses of dietary compounds, the safety profile of dosages, to establish the most efficient way of administration, and bioavailability, in order to maximize the beneficial effects already discovered, and to ensure replicability. Thus, nutrition represents a promising tool to be used not only in cancer prevention, but hopefully also in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kussmann M, Fay LB (2008) Nutrigenomics and personalized nutrition: science and concept. Pers Med 5(5):447–455

    Google Scholar 

  2. Meeran SM, Ahmed A, Tollefsbol TO (2010) Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics 1(3–4):101–116

    Google Scholar 

  3. Issa JP (2008) Cancer prevention: epigenetics steps up to the plate. Cancer Prev Res (Phila Pa) 1(4):219–222

    Google Scholar 

  4. Suter MA, Aagaard-Tillery KM (2009) Environmental influences on epigenetic profiles. Semin Reprod Med 27(5):380–390

    Google Scholar 

  5. Herceg Z (2009) Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis 22(2):91–103

    Google Scholar 

  6. Junien C (2006) Impact of diets and nutrients/drugs on early epigenetic programming. J Inherit Metab Dis 29(2–3):359–365

    Google Scholar 

  7. Dolinoy DC, Weidman JR, Jirtle RL (2007) Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol 23(3):297–307

    Google Scholar 

  8. Landis-Piwowar KR, Milacic V, Dou QP (2008) Relationship between the methylation status of dietary flavonoids and their growth-inhibitory and apoptosis-inducing activities in human cancer cells. J Cell Biochem 105(2):514–523

    Google Scholar 

  9. Li Y, Tollefsbol TO (2010) Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem 17(20):2141–2151

    Google Scholar 

  10. Paluszczak J, Krajka-Kuźniak V, Baer-Dubowska W (2010) The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol Lett 192(2):119–125

    Google Scholar 

  11. Majid S, Kikuno N, Nelles J, Noonan E, Tanaka Y, Kawamoto K, Hirata H, Li LC, Zhao H, Okino ST, Place RF, Pookot D, Dahiya R (2008) Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res 68(8):2736–2734

    Google Scholar 

  12. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298

    Google Scholar 

  13. Ducasse M, Brown MA (2006) Epigenetic aberrations and cancer. Mol Cancer 5:60

    Google Scholar 

  14. Doll R, Peto R (1981) The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 66(6):1191–1308

    Google Scholar 

  15. Lundstrom K (2014) Nutritional influence on epigenetics and disease. Austin Publ Group, New Jersey 1(3):1014

    Google Scholar 

  16. Li Y, Tollefsbol TO (2011) p16(INK4a) suppression by glucose restriction contributes to human cellular lifespan extension through SIRT1-mediated epigenetic and genetic mechanisms. PLoS One 6(2):e17421

    Google Scholar 

  17. Meeran SM, Patel SN, Tollefsbol TO (2010) Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One 5(7):e11457

    Google Scholar 

  18. Ross SA, Davis CD (2011) MicroRNA, nutrition, and cancer prevention. Adv Nutr 2(6):472–485

    Google Scholar 

  19. Ong TP, Moreno FS, Ross SA (2011) Targeting the epigenome with bioactive food components for cancer prevention. J Nutrigenet Nutrigenomics 4(5):275–292

    Google Scholar 

  20. World Cancer Research Fund/American Institute for Cancer Research (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. RR Donnelley, Illinois

    Google Scholar 

  21. Donaldson MS (2004) Nutrition and cancer: a review of the evidence for an anti-cancer diet. Nutr J 3(1):19 Available from: http://nutritionj.biomedcentral.com/articles/10.1186/1475-2891-3-19

    Google Scholar 

  22. Zhang N (2015) Epigenetic modulation of DNA methylation by nutrition and its mechanisms in animals. Anim Nutr 1(3):144–151

    Google Scholar 

  23. Altmann S, Murani E, Schwerin M, Metges CC, Wimmers K, Ponsuksili S (2012) Somatic cytochrome c (CYCS) gene expression and promoter-specific DNA methylation in a porcine model of prenatal exposure to maternal dietary protein excess and restriction. Br J Nutr 107(6):791–799

    Google Scholar 

  24. Dudley KJ, Sloboda DM, Connor KL, Beltrand J, Vickers MH (2011) Offspring of mothers fed a high fat diet display hepatic cell cycle inhibition and associated changes in gene expression and DNA methylation. PLoS One 6(7):e21662

    Google Scholar 

  25. Jousse C, Parry L, Lambert-Langlais S, Maurin A-C, Averous J, Bruhat A, Carraro V, Tost J, Letteron P, Chen P, Jockers R, Launay JM, Mallet J, Fafournoux P (2011) Perinatal undernutrition affects the methylation and expression of the leptin gene in adults: implication for the understanding of metabolic syndrome. FASEB J 25(9):3271–3278

    Google Scholar 

  26. Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13(2):97–109

    Google Scholar 

  27. Zeisel SH (2009) Epigenetic mechanisms for nutrition determinants of later health outcomes. Am J Clin Nutr 89(5):1488S–1493S

    Google Scholar 

  28. Cheng X, Blumenthal RM (2008) Mammalian DNA methyltransferases: a structural perspective. Structure 16(3):341–350

    Google Scholar 

  29. Niculescu MD, Lupu DS (2011) Nutritional influence on epigenetics and effects on longevity. Curr Opin Clin Nutr Metab Care 14(1):35–40

    Google Scholar 

  30. Wajed SA, Laird PW, DeMeester TR (2001) DNA methylation: an alternative pathway to cancer. Ann Surg 234:1):10–1):20

    Google Scholar 

  31. Liao Y-P, Chen L-Y, Huang R-L, Su P-H, Chan MWY, Chang C-C, Yu MH, Wang PH, Yen MS, Nephew KP, Lai HC (2014) Hypomethylation signature of tumor-initiating cells predicts poor prognosis of ovarian cancer patients. Hum Mol Genet 23(7):1894–1906

    Google Scholar 

  32. Yang X, Yan L, Davidson NE (2001) DNA methylation in breast cancer. Endocr Relat Cancer 8(2):115–127

    Google Scholar 

  33. Daniel M, Tollefsbol TO (2015) Epigenetic linkage of aging, cancer and nutrition. J Exp Biol 218(1):59–70

    Google Scholar 

  34. Bishop KS, Ferguson LR (2015) The interaction between epigenetics, nutrition and the development of cancer. Nutrients 7(2):922–947

    Google Scholar 

  35. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–2054

    Google Scholar 

  36. Singhal RP, Mays-Hoopes LL, Eichhorn GL (1987) DNA methylation in aging of mice. Mech Ageing Dev 41(3):199–210

    Google Scholar 

  37. Cheng JC, Matsen CB, Gonzales FA, Ye W, Greer S, Marquez VE, Jones PA, Selker EU (2003) Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst 95(5):399–409

    Google Scholar 

  38. Hughes LA, van den Brandt PA, de Bruïne AP, Wouters KAD, Hulsmans S, Spiertz A, Goldbohm RA, de Goeij AF, Herman JG, Weijenberg MP, van Engeland M (2009) Early life exposure to famine and colorectal cancer risk: a role for epigenetic mechanisms. PLoS One 4(11):e7951

    Google Scholar 

  39. Issa J-P (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4(12):988–993

    Google Scholar 

  40. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105(44):17046–17049

    Google Scholar 

  41. Pembrey M, Saffery R, Bygren LO (2014) Human transgenerational responses to early-life experience: potential impact on development, health and biomedical research. J Med Genet 51:563–572

    Google Scholar 

  42. Kyle UG, Pichard C (2006) The Dutch famine of 1944-1945: a pathophysiological model of long-term consequences of wasting disease. Curr Opin Clin Nutr Metab Care 9(4):388–394

    Google Scholar 

  43. Lillycrop KA, Burdge GC (2012) Epigenetic mechanisms linking early nutrition to long term health. Best Pract Res Clin Endocrinol Metab 26(5):667–676

    Google Scholar 

  44. Teegarden D, Romieu I, Lelièvre SA (2012) Redefining the impact of nutrition on breast cancer incidence: is epigenetics involved? Nutr Res Rev 25(1):68–95

    Google Scholar 

  45. Yamaji T, Inoue M, Sasazuki S, Iwasaki M, Kurahashi N, Shimazu T, Tsugane S, Japan Public Health Center-based Prospective Study Group (2008) Fruit and vegetable consumption and squamous cell carcinoma of the esophagus in Japan: the JPHC study. Int J Cancer 123(8):1935–1940

    Google Scholar 

  46. Whitehead N, Reyner F, Lindenbaum J (1989) The journal of the American Medical Association: Megaloblastic changes in cervical epithelium. Association with oral contraceptive therapy and reversal with folic acid. Nutr Rev 47(10):318–321

    Google Scholar 

  47. Shrubsole MJ, Shu XO, Li HL, Cai H, Yang G, Gao YT, Gao J, Zheng W (2011) Dietary B vitamin and methionine intakes and breast cancer risk among Chinese women. Am J Epidemiol 173(10):1171–1182

    Google Scholar 

  48. Maruti SS, Ulrich CM, White E (2009) Folate and one-carbon metabolism nutrients from supplements and diet in relation to breast cancer risk. Am J Clin Nutr 89(2):624–633

    Google Scholar 

  49. Singh SM, Murphy B, O’Reilly RL (2003) Involvement of gene-diet/drug interaction in DNA methylation and its contribution to complex diseases: from cancer to schizophrenia. Clin Genet 64(6):451–460

    Google Scholar 

  50. Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger A (2012) Epigenetic mechanisms in anti-cancer actions of bioactive food components—the implications in cancer prevention. Br J Pharmacol 167:279–297

    Google Scholar 

  51. van den Donk M, Pellis L, Crott JW, van Engeland M, Friederich P, Nagengast FM, van Bergeijk JD, de Boer SY, Mason JB, Kok FJ, Keijer J, Kampman E (2007) Folic acid and vitamin B-12 supplementation does not favorably influence uracil incorporation and promoter methylation in rectal mucosa DNA of subjects with previous colorectal adenomas. J Nutr 137(9):2114–2120

    Google Scholar 

  52. Supic G, Jagodic M, Magic Z (2013) Epigenetics: a new link between nutrition and cancer. Nutr Cancer 65(6):781–792

    Google Scholar 

  53. Selhub J (2002) Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J Nutr Health Aging 6(1):39–42

    Google Scholar 

  54. Wei EK, Giovannucci E, Selhub J, Fuchs CS, Hankinson SE, Ma J (2005) Plasma vitamin B6 and the risk of colorectal cancer and adenoma in women. J Natl Cancer Inst 97(9):684–692

    Google Scholar 

  55. Mandal S, Davie JR (2010) Estrogen regulated expression of the p21 Waf1/Cip1 gene in estrogen receptor positive human breast cancer cells. J Cell Physiol 224(1):28–32

    Google Scholar 

  56. Fang MZ, Chen D, Sun Y, Jin Z, Christman JK, Yang CS (2005) Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin cancer res off J am Assoc. Cancer Res 11(19 Pt 1):7033–7041

    Google Scholar 

  57. Chung J-H, Ostrowski MC, Romigh T, Minaguchi T, Waite KA, Eng C (2006) The ERK1/2 pathway modulates nuclear PTEN-mediated cell cycle arrest by cyclin D1 transcriptional regulation. Hum Mol Genet 15(17):2553–2559

    Google Scholar 

  58. Olthof MR, Hollman PC, Zock PL, Katan MB (2001) Consumption of high doses of chlorogenic acid, present in coffee, or of black tea increases plasma total homocysteine concentrations in humans. Am J Clin Nutr 73(3):532–538

    Google Scholar 

  59. Goel A, Aggarwal BB (2010) Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr Cancer 62(7):919–930

    Google Scholar 

  60. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78(18):2081–2087

    Google Scholar 

  61. Liu Z, Xie Z, Jones W, Pavlovicz RE, Liu S, Yu J, Li PK, Lin J, Fuchs JR, Marcucci G, Li C, Chan KK (2009) Curcumin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett 19(3):706–709

    Google Scholar 

  62. USDA Food Composition Databases [Internet]. Available from: https://ndb.nal.usda.gov/ndb/nutrients/report/nutrientsfrm?max=25&offset=0&totCount=0&nutrient1=337&nutrient2=&nutrient3=&subset=0&fg=&sort=c&measureby=m

  63. Kouzarides TBS (2007) Chromatin modifications and their mechanism of action. In: Allis CD, Jenuwein T, Reinberg D (eds) Epigenetics. Cold Spring Harbor Press, New York, pp 191–209

    Google Scholar 

  64. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Google Scholar 

  65. Su LJ, Mahabir S, Ellison GL, McGuinn LA, Reid BC (2012) Epigenetic contributions to the relationship between cancer and dietary intake of nutrients, bioactive food components, and Environmental Toxicants. Front Genet 2:91 Available from: http://journal.frontiersin.org/article/10.3389/fgene.2011.00091/abstract

    Google Scholar 

  66. Cohen I, Poreba E, Kamieniarz K, Schneider R (2011) Histone modifiers in cancer: friends or foes? Genes Cancer 2(6):631–647

    Google Scholar 

  67. Kuroishi T, Rios-Avila L, Pestinger V, Wijeratne SSK, Zempleni J (2011) Biotinylation is a natural, albeit rare, modification of human histones. Mol Genet Metab 104(4):537–545

    Google Scholar 

  68. Morimoto T, Sunagawa Y, Kawamura T, Takaya T, Wada H, Nagasawa A, Komeda M, Fujita M, Shimatsu A, Kita T, Hasegawa K (2008) The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest 118(3):868–878

    Google Scholar 

  69. Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, Moffat C, Crawford S, Saliba S, Jardine K, Xuan J, Evans M, Harper ME, McBurney MW (2008) SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 3(3):e1759

    Google Scholar 

  70. Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W, Chang H, Xu G, Gaudet F, Li E, Chen T (2009) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41(1):125–129

    Google Scholar 

  71. Mariadason JM (2009) HDACs and HDAC inhibitors in colon cancer. Epigenetics 3(1):28–37

    Google Scholar 

  72. Nian H, Delage B, Ho E, Dashwood RH (2009) Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ Mol Mutagen 50(3):213–221

    Google Scholar 

  73. Druesne-Pecollo N, Latino-Martel P (2011) Modulation of histone acetylation by garlic sulfur compounds. Anti Cancer Agents Med Chem 11(3):254–259

    Google Scholar 

  74. Dashwood RH, Ho E (2007) Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol 17(5):363–369

    Google Scholar 

  75. Attoub S, Hassan AH, Vanhoecke B, Iratni R, Takahashi T, Gaben A-M, Bracke M, Awad S, John A, Kamalboor HA, Al Sultan MA, Arafat K, Gespach C, Petroianu G (2011) Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells. Eur J Pharmacol 651(1–3):18–25

    Google Scholar 

  76. Cheng X, Blumenthal RM (2010) Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry (Mosc) 49(14):2999–3008

    Google Scholar 

  77. Kang J, Chen J, Shi Y, Jia J, Zhang Y (2005) Curcumin-induced histone hypoacetylation: the role of reactive oxygen species. Biochem Pharmacol 69(8):1205–1213

    Google Scholar 

  78. Chung S, Yao H, Caito S, Hwang J-W, Arunachalam G, Rahman I (2010) Regulation of SIRT1 in cellular functions: role of polyphenols. Arch Biochem Biophys 501(1):79–90

    Google Scholar 

  79. Tili E, Michaille J-J, Alder H, Volinia S, Delmas D, Latruffe N (2010) Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem Pharmacol 80(12):2057–2065

    Google Scholar 

  80. Khanim FL, Gommersall LM, Wood VHJ, Smith KL, Montalvo L, O’Neill LP, Xu Y, Peehl DM, Stewart PM, Turner BM, Campbell MJ (2010) Altered SMRT levels disrupt vitamin D3 receptor signalling in prostate cancer cells. Oncogene 23(40):6712–6725

    Google Scholar 

  81. Gao Y, Tollefsbol T (2015) Impact of epigenetic dietary components on cancer through histone modifications. Curr Med Chem 22(17):2051–2064

    Google Scholar 

  82. Li Y, Yuan Y-Y, Meeran SM, Tollefsbol TO (2010) Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells. Mol Cancer 9:274

    Google Scholar 

  83. Lopez-Serra P, Esteller M (2012) DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene 31(13):1609–1622

    Google Scholar 

  84. Liloglou T, Bediaga NG, Brown BRB, Field JK, Davies MPA (2014) Epigenetic biomarkers in lung cancer. Cancer Lett 342(2):200–212

    Google Scholar 

  85. Toraño EG, Fernandez AF, Urdinguio RG, Fraga MF (2014) Role of epigenetics in neural differentiation: implications for health and disease. In: Maulik N, Karagiannis T (eds) Molecular mechanisms and physiology of disease. Springer, New York, pp 63–79 Available from: http://link.springer.com/10.1007/978-1-4939-0706-9_2

    Google Scholar 

  86. Ferdin J, Kunej T, Calin GA (2010) Non-coding RNAs: identification of cancer-associated microRNAs by gene profiling. Technol Cancer Res Treat 9(2):123–138

    Google Scholar 

  87. Gavrilas L, Ionescu C, Tudoran O, Lisencu C, Balacescu O, Miere D (2016) The role of bioactive dietary components in modulating miRNA expression in colorectal cancer. Nutrients 8:590

    Google Scholar 

  88. Slattery M, Herrick J, Mullany L, Stevens J, Wolff R (2016) Diet and lifestyle factors associated with miRNA expression in colorectal tissue. Pharmacogenomics Pers Med 10:1–16

    Google Scholar 

  89. Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W, Jacob ST, Ghoshal K (2006) Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99(3):671–678

    Google Scholar 

  90. Wang L-L, Zhang Z, Li Q, Yang R, Pei X, Xu Y, Wang J, Zhou SF, Li Y (2009) Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. Hum Reprod 24(3):562–579

    Google Scholar 

  91. Parasramka MA, Ho E, Williams DE, Dashwood RH (2012) MicroRNAs, diet, and cancer: new mechanistic insights on the epigenetic actions of phytochemicals. Mol Carcinog 51(3):213–230

    Google Scholar 

  92. Saini S, Majid S, Dahiya R (2010) Diet, microRNAs and prostate cancer. Pharm Res 27(6):1014–1026

    Google Scholar 

  93. Sun M, Estrov Z, Ji Y, Coombes KR, Harris DH, Kurzrock R (2008) Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther 7:464–473

    Google Scholar 

  94. Yang J, Cao Y, Sun J, Zhang Y (2010) Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med Oncol 27(4):1114–1118

    Google Scholar 

  95. Sun Q, Cong R, Yan H, Gu H, Zeng Y, Liu N (2009) Genistein inhibits growth of human uveal melanoma cells and affects microRNA-27a and target gene expression. Oncol Rep 22:563–567

    Google Scholar 

  96. Panagiotakos D, Sitara M, Pitsavos C, Stefanadis C (2007) Estimating the 10-year risk of cardiovascular disease and its economic consequences, by the level of adherence to the Mediterranean diet: the ATTICA study. J Med Food 10(2):239–243

    Google Scholar 

  97. Komduur RH, Korthals M, te Molder H (2009) The good life: living for health and a life without risks? On a prominent script of nutrigenomics. Br J Nutr 101(3):307–316

    Google Scholar 

  98. Elsamanoudy AZ, Neamat-Allah MAM, Mohammad FAH, Hassanien M, Nada HA (2016) The role of nutrition related genes and nutrigenetics in understanding the pathogenesis of cancer. J Microsc Ultrastruct 4(3):115–122

    Google Scholar 

  99. Béliveau R, Gingras D (2007) Role of nutrition in preventing cancer. Can Fam Physician 53(11):1905–1911

    Google Scholar 

  100. Ames BN, Gold LS, Willett WC (1995) The causes and prevention of cancer. Proc Natl Acad Sci U S A 92(12):5258–5265

    Google Scholar 

  101. Ioannides C, Lewis DFV (2004) Cytochromes P450 in the bioactivation of chemicals. Curr Top Med Chem 4(16):1767–1788

    Google Scholar 

  102. Conney AH (2003) Enzyme induction and dietary chemicals as approaches to cancer chemoprevention: the seventh DeWitt S. Goodman Lecture. Cancer Res 63(21):7005–7031

    Google Scholar 

  103. Lamy S, Gingras D, Béliveau R (2002) Green tea catechins inhibit vascular endothelial growth factor receptor phosphorylation. Cancer Res 62(2):381–385

    Google Scholar 

  104. Béliveau R, Gingras D (2004) Green tea: prevention and treatment of cancer by nutraceuticals. Lancet 364(9439):1021–1022

    Google Scholar 

  105. Shanafelt TD, Lee YK, Call TG, Nowakowski GS, Dingli D, Zent CS, Kay NE (2006) Clinical effects of oral green tea extracts in four patients with low grade B-cell malignancies. Leuk Res 30(6):707–712

    Google Scholar 

  106. Labrecque L, Lamy S, Chapus A, Mihoubi S, Durocher Y, Cass B, Bojanowski MW, Gingras D, Béliveau R (2005) Combined inhibition of PDGF and VEGF receptors by ellagic acid, a dietary-derived phenolic compound. Carcinogenesis 26(4):821–826

    Google Scholar 

  107. Lamy S, Blanchette M, Michaud-Levesque J, Lafleur R, Durocher Y, Moghrabi A, Barrette S, Gingras D, Béliveau R (2006) Delphinidin, a dietary anthocyanidin, inhibits vascular endothelial growth factor receptor-2 phosphorylation. Carcinogenesis 27(5):989–996

    Google Scholar 

  108. Hardy TM, Tollefsbol TO (2006) Epigenetic diet: impact on the epigenome and cancer. Epigenomics 3(4):503–518

    Google Scholar 

  109. Aykan NF (2015) Red meat and colorectal cancer. Oncol Rev 9(1):288 Available from: http://www.oncologyreviews.org/index.php/or/article/view/288

    Google Scholar 

  110. Oostindjer M, Alexander J, Amdam GV, Andersen G, Bryan NS, Chen D, Corpet DE, De Smet S, Dragsted LO, Haug A, Karlsson AH, Kleter G, de Kok TM, Kulseng B, Milkowski AL, Martin RJ, Pajari AM, Paulsen JE, Pickova J, Rudi K, Sødring M, Weed DL, Egelandsdal B (2015) The role of red and processed meat in colorectal cancer development: a perspective. Meat Sci 97(4):583–596

    Google Scholar 

  111. Joosen AMCP, Kuhnle GGC, Aspinall SM, Barrow TM, Lecommandeur E, Azqueta A, Collins AR, Bingham SA (2009) Effect of processed and red meat on endogenous nitrosation and DNA damage. Carcinogenesis 30(8):1402–1407

    Google Scholar 

  112. Ijssennagger N, Rijnierse A, de Wit NJW, Boekschoten MV, Dekker J, Schonewille A, Müller M, van der Meer R (2013) Dietary heme induces acute oxidative stress, but delayed cytotoxicity and compensatory hyperproliferation in mouse colon. Carcinogenesis 34(7):1628–1635

    Google Scholar 

  113. Bastide NM, Pierre FHF, Corpet DE (2011) Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev Res (Phila Pa) 4(2):177–184

    Google Scholar 

  114. Sugimura T (2000) Nutrition and dietary carcinogens. Carcinogenesis 21(3):387–395

    Google Scholar 

  115. Frentzel-Beyme R, Helmert U (2000) Association between malignant tumors of the thyroid gland and exposure to environmental protective and risk factors. Rev Environ Health 5(3):337–358

    Google Scholar 

  116. Kohlmeier M (2013) Nutrigenetics: applying the science of personal nutrition [Internet]. Academic, Oxford. Available from: http://www.myilibrary.com?id=416654

    Google Scholar 

  117. Camp KM, Trujillo E (2014) Position of the academy of nutrition and dietetics: nutritional genomics. J Acad Nutr Diet 114(2):299–312

    Google Scholar 

  118. Yong W-S, Hsu F-M, Chen P-Y (2016) Profiling genome-wide DNA methylation. Epigenetics Chromatin [Internet]; 9. Available from: http://epigeneticsandchromatin.biomedcentral.com/articles/10.1186/s13072-016-0075-3

  119. Busch C, Burkard M, Leischner C, Lauer UM, Frank J, Venturelli S (2015) Epigenetic activities of flavonoids in the prevention and treatment of cancer. Clin Epigenetics 7:64 Available from: http://www.clinicalepigeneticsjournal.com/content/7/1/64

    Google Scholar 

  120. Chakravarty S, Bhat UA, Reddy RG, Gupta P, Kumar A (2014) Histone Deacetylase inhibitors and psychiatric disorders. In: Epigenetics in psychiatry. Elsevier, New York, pp 515–544 Available from: http://linkinghub.elsevier.com/retrieve/pii/B9780124171145000255

    Google Scholar 

  121. Peedicayil J (2014) Epigenetic drugs for multiple sclerosis. Curr Neuropharmacol 4(1):3–9

    Google Scholar 

  122. Gilbert ER, Liu D (2010) Flavonoids influence epigenetic-modifying enzyme activity: structure—function relationships and the therapeutic potential for cancer. Curr Med Chem 17(17):1756–1768

    Google Scholar 

  123. Rajendran P, Williams DE, Ho E, Dashwood RH (2011) Metabolism as a key to histone deacetylase inhibition. Crit Rev Biochem Mol Biol 46(3):181–199

    Google Scholar 

  124. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42

    Google Scholar 

  125. Poole RM (2014) Belinostat: first global approval. Drugs 74(13):1543–1554

    Google Scholar 

  126. Garnock-Jones KP (2015) Panobinostat: first global approval. Drugs 75(6):695–704

    Google Scholar 

  127. Rodríguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17(3):330–339

    Google Scholar 

  128. Chang LC, Yu YL (2016) Dietary components as epigenetic-regulating agents against cancer. BioMedicine 6(1):2 Available from: http://www.globalsciencejournals.com/article/10.7603/s40681-016-0002-8

    Google Scholar 

Download references

Acknowledgments

The work was funded, in part, by POSCCE Project ID: 1854, cod SMIS: 48749, contract 677/09.04.2015, and by POC Project Nutrigen, SMIS: 104852, contract 91/09.09.2016, ID P_37-684.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Andreescu, N., Puiu, M., Niculescu, M. (2018). Effects of Dietary Nutrients on Epigenetic Changes in Cancer. In: Dumitrescu, R., Verma, M. (eds) Cancer Epigenetics for Precision Medicine . Methods in Molecular Biology, vol 1856. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8751-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8751-1_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8750-4

  • Online ISBN: 978-1-4939-8751-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics