Skip to main content

Epigenome-Based Precision Medicine in Lung Cancer

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1856))

Abstract

Lung cancer is the leading cause of cancer-related deaths in the world. Despite significant advances in the early detection and treatment of the disease, the prognosis remains poor, with an overall 5-year survival rate ranging from 15% to 20%. This poor prognosis results largely from early micrometastatic spread of cancer cells to nearby lymph nodes or tissues and partially from early recurrence after curative surgical resection. Recently, precision medicines that target potential oncogenic driver mutations have been approved to treat lung cancer. However, some lung cancer patients do not have targetable mutations, and many patients develop resistance to targeted therapy. Tumor heterogeneity and mutational density are also challenges in treating lung cancer, which underscores the need for developing alternative therapeutic strategies for treating lung cancer. Epigenetic therapy may circumvent the problems of tumor heterogeneity and drug resistance by affecting the expression of several hundred target genes. This review highlights precision medicine using an innovative approach of epigenetic priming prior to conventional standard therapy or targeted cancer therapy in lung cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

5-Aza-dC:

5-Aza-2′-deoxycytidine

DNMT:

DNA methyltransferase

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial–mesenchymal transition

HDAC:

Histone deacetylase

miRNA:

MicroRNA

NSCLC:

Non-small cell lung cancer

ORR:

Overall response rate

OS:

Overall survival

PFS:

Progression-free survival

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  3. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM, Sicks JD, National Lung Screening Trial Research Team (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365(5):395–409

    Article  PubMed  Google Scholar 

  4. Black WC, Gareen IF, Soneji SS, Sicks JD, Keeler EB, Aberle DR, Naeim A, Church TR, Silvestri GA, Gorelick J, Gatsonis C, National Lung Screening Trial Research Team (2014) Cost-effectiveness of CT screening in the National Lung Screening Trial. N Engl J Med 371(19):1793–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sechler M, Cizmic AD, Avasarala S, Van Scoyk M, Brzezinski C, Kelley N, Bikkavilli RK, Winn RA (2013) Non-small-cell lung cancer: molecular targeted therapy and personalized medicine–drug resistance, mechanisms, and strategies. Pharmgenomics Pers Med 6:25–36

    PubMed  PubMed Central  Google Scholar 

  6. Chan BA, Hughes BG (2015) Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res 4(1):36–54

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Langevin SM, Kratzke RA, Kelsey KT (2015) Epigenetics of lung cancer. Transl Res 165(1):74–90

    Article  CAS  PubMed  Google Scholar 

  8. Ansari J, Shackelford RE, El-Osta H (2016) Epigenetics in non-small cell lung cancer: from basics to therapeutics. Transl Lung Cancer Res 5(2):155–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Belinsky SA (2004) Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 4(9):707–717

    Article  CAS  PubMed  Google Scholar 

  10. Heyn H, Esteller M (2012) DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet 13(10):679–692

    Article  CAS  PubMed  Google Scholar 

  11. Kim DH, Nelson HH, Wiencke JK, Zheng S, Christiani DC, Wain JC, Mark EJ, Kelsey KT (2001) p16(INK4a) and histology-specific methylation of CpG islands by exposure to tobacco smoke in non-small cell lung cancer. Cancer Res 61(8):3419–3424

    CAS  PubMed  Google Scholar 

  12. Liu Y, Lan Q, Siegfried JM, Luketich JD, Keohavong P (2006) Aberrant promoter methylation of p16 and MGMT genes in lung tumors from smoking and never-smoking lung cancer patients. Neoplasia 8(1):46–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Soria JC, Lee HY, Lee JI, Wang L, Issa JP, Kemp BL, Liu DD, Kurie JM, Mao L, Khuri FR (2002) Lack of PTEN expression in non-small cell lung cancer could be related to promoter methylation. Clin Cancer Res 8(5):1178–1184

    CAS  PubMed  Google Scholar 

  14. Kim DH, Kim JS, Ji YI, Shim YM, Kim H, Han J, Park J (2003) Hypermethylation of RASSF1A promoter is associated with the age at starting smoking and a poor prognosis in primary non-small cell lung cancer. Cancer Res 63(13):3743–3746

    CAS  PubMed  Google Scholar 

  15. Brabender J, Usadel H, Metzger R, Schneider PM, Park J, Salonga D, Tsao-Wei DD, Groshen S, Lord RV, Takebe N, Schneider S, Hölscher AH, Danenberg KD, Danenberg PV (2003) Quantitative O(6)-methylguanine DNA methyltransferase methylation analysis in curatively resected non-small cell lung cancer: associations with clinical outcome. Clin Cancer Res 9(1):223–227

    CAS  PubMed  Google Scholar 

  16. Seng TJ, Currey N, Cooper WA, Lee CS, Chan C, Horvath L, Sutherland RL, Kennedy C, McCaughan B, Kohonen-Corish MR (2008) DLEC1 and MLH1 promoter methylation are associated with poor prognosis in non-small cell lung carcinoma. Br J Cancer 99(2):375–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zochbauer-Muller S, Fong KM, Virmani AK, Geradts J, Gazdar AF, Minna JD (2001) Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res 61(1):249–255

    CAS  PubMed  Google Scholar 

  18. Li QL, Kim HR, Kim WJ, Choi JK, Lee YH, Kim HM, Li LS, Kim H, Chang J, Ito Y, Youl Lee K, Bae SC (2004) Transcriptional silencing of the RUNX3 gene by CpG hypermethylation is associated with lung cancer. Biochem Biophys Res Commun 314(1):223–228

    Article  CAS  PubMed  Google Scholar 

  19. Nakata S, Sugio K, Uramoto H, Oyama T, Hanagiri T, Morita M, Yasumoto K (2006) The methylation status and protein expression of CDH1, p16(INK4A), and fragile histidine triad in nonsmall cell lung carcinoma: epigenetic silencing, clinical features, and prognostic significance. Cancer 106(10):2190–2199

    Article  CAS  PubMed  Google Scholar 

  20. Toyooka KO, Toyooka S, Virmani AK, Sathyanarayana UG, Euhus DM, Gilcrease M, Minna JD, Gazdar AF (2001) Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res 61(11):4556–4560

    CAS  PubMed  Google Scholar 

  21. Virmani AK, Rathi A, Zochbauer-Muller S, Sacchi N, Fukuyama Y, Bryant D, Maitra A, Heda S, Fong KM, Thunnissen F, Minna JD, Gazdar AF (2000) Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas. J Natl Cancer Inst 92(16):1303–1307

    Article  CAS  PubMed  Google Scholar 

  22. Schneider KU, Dietrich D, Fleischhacker M, Leschber G, Merk J, Schaper F, Stapert HR, Vossenaar ER, Weickmann S, Liebenberg V, Kneip C, Seegebarth A, Erdogan F, Rappold G, Schmidt B (2011) Correlation of SHOX2 gene amplification and DNA methylation in lung cancer tumors. BMC Cancer 11:102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Usadel H, Brabender J, Danenberg KD, Jeronimo C, Harden S, Engles J, Danenberg PV, Yang S, Sidransky D (2002) Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Res 62(2):371–375

    CAS  PubMed  Google Scholar 

  24. Selamat SA, Chung BS, Girard L, Zhang W, Zhang Y, Campan M, Siegmund KD, Koss MN, Hagen JA, Lam WL, Lam S, Gazdar AF, Laird-Offringa IA (2012) Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression. Genome Res 22(7):1197–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seligson DB, Horvath S, McBrian MA, Mah V, Yu H, Tze S, Wang Q, Chia D, Goodglick L, Kurdistani SK (2009) Global levels of histone modifications predict prognosis in different cancers. Am J Pathol 174(5):1619–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barlesi F, Giaccone G, Gallegos-Ruiz MI, Loundou A, Span SW, Lefesvre P, Kruyt FA, Rodriguez JA (2007) Global histone modifications predict prognosis of resected non small-cell lung cancer. J Clin Oncol 25(28):4358–4364

    Article  PubMed  Google Scholar 

  27. Song JS, Kim YS, Kim DK, Park SI, Jang SJ (2012) Global histone modification pattern associated with recurrence and disease-free survival in non-small cell lung cancer patients. Pathol Int 62(3):182–190

    Article  PubMed  Google Scholar 

  28. Suzuki A, Makinoshima H, Wakaguri H, Esumi H, Sugano S, Kohno T, Tsuchihara K, Suzuki Y (2014) Aberrant transcriptional regulations in cancers: genome, transcriptome and epigenome analysis of lung adenocarcinoma cell lines. Nucleic Acids Res 42(22):13557–13572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Melo SA, Esteller M (2011) Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett 585(13):2087–2099

    Article  CAS  PubMed  Google Scholar 

  31. Guan P, Yin Z, Li X, Wu W, Zhou B (2012) Meta-analysis of human lung cancer microRNA expression profiling studies comparing cancer tissues with normal tissues. J Exp Clin Cancer Res 31:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vosa U, Vooder T, Kolde R, Vilo J, Metspalu A, Annilo T (2013) Meta-analysis of microRNA expression in lung cancer. Int J Cancer 132(12):2884–2893

    Article  CAS  PubMed  Google Scholar 

  33. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J, Chin L, Brown D, Slack FJ (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67(16):7713–7722

    Article  CAS  PubMed  Google Scholar 

  34. Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, Petrelli NJ, Dunn SP, Krueger LJ (2007) MicroRNA let-7a downregulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67(20):9762–9770

    Article  CAS  PubMed  Google Scholar 

  35. Zhou Y, Liang H, Liao Z, Wang Y, Hu X, Chen X, Xu L, Hu Z (2017) miR-203 enhances let-7 biogenesis by targeting LIN28B to suppress tumor growth in lung cancer. Sci Rep 7:42680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64(11):3753–3756

    Article  CAS  PubMed  Google Scholar 

  37. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198

    Article  CAS  PubMed  Google Scholar 

  39. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104(40):15805–15810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tan M, Wu J, Cai Y (2013) Suppression of Wnt signaling by the miR-29 family is mediated by demethylation of WIF-1 in non-small-cell lung cancer. Biochem Biophys Res Commun 438(4):673–679

    Article  CAS  PubMed  Google Scholar 

  41. Wu DW, Hsu NY, Wang YC, Lee MC, Cheng YW, Chen CY, Lee H (2015) C-Myc suppresses microRNA-29b to promote tumor aggressiveness and poor outcomes in non-small cell lung cancer by targeting FHIT. Oncogene 34(16):2072–2082

    Article  CAS  PubMed  Google Scholar 

  42. Xu H, Cheung IY, Guo HF, Cheung NK (2009) MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. Cancer Res 69(15):6275–6281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gallardo E, Navarro A, Viñolas N, Marrades RM, Diaz T, Gel B, Quera A, Bandres E, Garcia-Foncillas J, Ramirez J, Monzo M (2009) miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis 30(11):1903–1909

    Article  CAS  PubMed  Google Scholar 

  44. Tanaka N, Toyooka S, Soh J, Kubo T, Yamamoto H, Maki Y, Muraoka T, Shien K, Furukawa M, Ueno T, Asano H, Tsukuda K, Aoe K, Miyoshi S (2012) Frequent methylation and oncogenic role of microRNA-34b/c in small-cell lung cancer. Lung Cancer 76(1):32–38

    Article  PubMed  Google Scholar 

  45. Okada N, Lin CP, Ribeiro MC, Biton A, Lai G, He X, Bu P, Vogel H, Jablons DM, Keller AC, Wilkinson JE, He B, Speed TP, He L (2014) A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev 28(5):438–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y, Araujo L, Carbone DP, Shilo K, Giri DK, Kelnar K, Martin D, Komaki R, Gomez DR, Krishnan S, Calin GA, Bader AG, Welsh JW (2015) PDL1 regulation by p53 via miR-34. J Natl Cancer Inst 108(1):djv303

    PubMed  PubMed Central  Google Scholar 

  47. Garofalo M, Jeon YJ, Nuovo GJ, Middleton J, Secchiero P, Joshi P, Alder H, Nazaryan N, Di Leva G, Romano G, Crawford M, Nana-Sinkam P, Croce CM (2013) MiR-34a/c-dependent PDGFR-α/β Downregulation inhibits tumorigenesis and enhances TRAIL-induced apoptosis in lung cancer. PLoS One 8(6):e67581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu B, Qu J, Xu F, Guo Y, Wang Y, Yu H, Qian B (2015) MiR-195 suppresses non-small cell lung cancer by targeting CHEK1. Oncotarget 6:9445–9456

    PubMed  PubMed Central  Google Scholar 

  49. Wang X, Wang Y, Lan H, Li J (2014) MiR-195 inhibits the growth and metastasis of NSCLC cells by targeting IGF1R. Tumour Biol 35(9):8765–8770

    Article  CAS  PubMed  Google Scholar 

  50. Yongchun Z, Linwei T, Xicai W, Lianhua Y, Guangqiang Z, Ming Y, Guanjian L, Yujie L, Yunchao H (2014) MicroRNA-195 inhibits non-small cell lung cancer cell proliferation, migration and invasion by targeting MYB. Cancer Lett 347(1):65–74

    Article  CAS  PubMed  Google Scholar 

  51. Ceppi P, Mudduluru G, Kumarswamy R, Rapa I, Scagliotti GV, Papotti M, Allgayer H (2010) Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol Cancer Res 8(9):1207–1216

    Article  CAS  PubMed  Google Scholar 

  52. Zhang N, Liu Y, Wang Y, Zhao M, Tu L, Luo F (2017) Decitabine reverses TGF-beta1-induced epithelial-mesenchymal transition in non-small-cell lung cancer by regulating miR-200/ZEB axis. Drug Des Devel Ther 11:969–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65(21):9628–9632

    Article  CAS  PubMed  Google Scholar 

  54. Mastubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H, Yamada H, Suzuki M, Nagino M, Nimura Y, Osada H, Takahashi T (2007) Apoptosis induction by antisense oligonucleotides against miR-17–5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene 26:6099–6105

    Article  CAS  Google Scholar 

  55. LingyuLi SW, Yan X, Li A, Zhang X, Li W, Zhou XWL, Yu D, Hu JF, Cui J (2017) Friend leukemia virus integration 1 promotes tumorigenesis of small cell lung cancer cells by activating the miR-17-92 pathway. Oncotarget 8(26):41975–41987. https://doi.org/10.18632/oncotarget.16715

    Article  Google Scholar 

  56. Lin RK, Hsu HS, Chang JW, Chen CY, Chen JT, Wang YC (2007) Alteration of DNA methyltransferases contributes to 5'CpG methylation and poor prognosis in lung cancer. Lung Cancer 55(2):205–213

    Article  PubMed  Google Scholar 

  57. Liu WB, Cui ZH, Ao L, Zhou ZY, Zhou YH, Yuan XY, Xiang YL, Liu JY, Cao J (2011) Aberrant methylation accounts for cell adhesion-related gene silencing during 3-methylcholanthrene and diethylnitrosamine induced multistep rat lung carcinogenesis associated with overexpression of DNA methyltransferases 1 and 3a. Toxicol Appl Pharmacol 251(1):70–78

    Article  CAS  PubMed  Google Scholar 

  58. Kim H, Kwon YM, Kim JS, Han J, Shim YM, Park J, Kim DH (2006) Elevated mRNA levels of DNA methyltransferase-1 as an independent prognostic factor in primary nonsmall cell lung cancer. Cancer 107(5):1042–1049

    Article  CAS  PubMed  Google Scholar 

  59. Husni RE, Shiba-Ishii A, Iiyama S, Shiozawa T, Kim Y, Nakagawa T, Sato T, Kano J, Minami Y, Noguchi M (2016) DNMT3a expression pattern and its prognostic value in lung adenocarcinoma. Lung Cancer 97:59–65

    Article  PubMed  Google Scholar 

  60. Lin RK, Hsieh YS, Lin P, Hsu HS, Chen CY, Tang YA, Lee CF, Wang YC (2010) The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients. J Clin Invest 120(2):521–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Momparler RL (2005) Pharmacology of 5-Aza-2′-deoxycytidine (decitabine). Semin Hematol 42(3 Suppl 2):S9–s16

    Article  CAS  PubMed  Google Scholar 

  62. Zhong S, Fields CR, Su N, Pan YX, Robertson KD (2007) Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene 26(18):2621–2634

    Article  CAS  PubMed  Google Scholar 

  63. Kassis ES, Zhao M, Hong JA, Chen GA, Nguyen DM, Schrump DS (2006) Depletion of DNA methyltransferase 1 and/or DNA methyltransferase 3b mediates growth arrest and apoptosis in lung and esophageal cancer and malignant pleural mesothelioma cells. J Thorac Cardiovasc Surg 131(2):298–306

    Article  CAS  PubMed  Google Scholar 

  64. Belinsky SA, Klinge DM, Stidley CA, Issa JP, Herman JG, March TH, Baylin SB (2003) Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. Cancer Res 63(21):7089–7093

    CAS  PubMed  Google Scholar 

  65. Schrump DS, Fischette MR, Nguyen DM, Zhao M, Li X, Kunst TF, Hancox A, Hong JA, Chen GA, Pishchik V, Figg WD, Murgo AJ, Steinberg SM (2006) Phase I study of decitabine-mediated gene expression in patients with cancers involving the lungs, esophagus, or pleura. Clin Cancer Res 12(19):5777–5785

    Article  CAS  PubMed  Google Scholar 

  66. Momparler RL (2013) Epigenetic therapy of non-small cell lung cancer using decitabine (5-aza-2′-deoxycytidine). Front Oncol 3:188

    Article  PubMed  PubMed Central  Google Scholar 

  67. Glozak MA, Seto E (2007) Histone deacetylases and cancer. Oncogene 26(37):5420–5432

    Article  CAS  PubMed  Google Scholar 

  68. Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338(1):17–31

    Article  CAS  PubMed  Google Scholar 

  69. Sasaki H, Moriyama S, Nakashima Y, Kobayashi Y, Kiriyama M, Fukai I, Yamakawa Y, Fujii Y (2004) Histone deacetylase 1 mRNA expression in lung cancer. Lung Cancer 46(2):171–178

    Article  PubMed  Google Scholar 

  70. Minamiya Y, Ono T, Saito H, Takahashi N, Ito M, Mitsui M, Motoyama S, Ogawa J (2011) Expression of histone deacetylase 1 correlates with a poor prognosis in patients with adenocarcinoma of the lung. Lung Cancer 74:300–304

    Article  PubMed  Google Scholar 

  71. Jung KH, Noh JH, Kim JK, Eun JW, Bae HJ, Xie HJ, Chang YG, Kim MG, Park H, Lee JY, Nam SW (2012) HDAC2 overexpression confers oncogenic potential to human lung cancer cells by deregulating expression of apoptosis and cell cycle proteins. J Cell Biochem 113(6):2167–2177

    Article  CAS  PubMed  Google Scholar 

  72. Osada H, Tatematsu Y, Saito H, Yatabe Y, Mitsudomi T, Takahashi T (2004) Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients. Int J Cancer 112(1):26–32

    Article  CAS  PubMed  Google Scholar 

  73. Grbesa I, Pajares MJ, Martinez-Terroba E, Agorreta J, Mikecin AM, Larrayoz M, Idoate MA, Gall-Troselj K, Pio R, Montuenga LM (2015) Expression of sirtuin 1 and 2 is associated with poor prognosis in non-small cell lung cancer patients. PLoS One 10(4):e0124670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kim HJ, Bae SC (2011) Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res 3(2):166–179

    CAS  PubMed  Google Scholar 

  75. Lane AA, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27(32):5459–5468

    Article  CAS  PubMed  Google Scholar 

  76. Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, Chiao JH, Reilly JF, Ricker JL, Richon VM, Frankel SR (2007) Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109(1):31–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rangwala S, Zhang C, Duvic M (2012) HDAC inhibitors for the treatment of cutaneous T-cell lymphomas. Future Med Chem 4(4):471–486

    Article  CAS  PubMed  Google Scholar 

  78. Komatsu N, Kawamata N, Takeuchi S, Yin D, Chien W, Miller CW, Koeffler HP (2006) SAHA, a HDAC inhibitor, has profound anti-growth activity against non-small cell lung cancer cells. Oncol Rep 15(1):187–191

    CAS  PubMed  Google Scholar 

  79. Riley JS, Hutchinson R, McArt DG, Crawford N, Holohan C, Paul I, Van Schaeybroeck S, Salto-Tellez M, Johnston PG, Fennell DA, Gately K, O'Byrne K, Cummins R, Kay E, Hamilton P, Stasik I, Longley DB (2013) Prognostic and therapeutic relevance of FLIP and procaspase-8 overexpression in non-small cell lung cancer. Cell Death Dis 4:e951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51

    Article  CAS  PubMed  Google Scholar 

  81. Zhao Y, Lu S, Wu L, Chai G, Wang H, Chen Y, Sun J, Yu Y, Zhou W, Zheng Q, Wu M, Otterson GA, Zhu WG (2006) Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1). Mol Cell Biol 26(7):2782–2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vansteenkiste J, Van Cutsem E, Dumez H, Chen C, Ricker JL, Randolph SS, Schöffski P (2008) Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer. Investig New Drugs 26(5):483–488

    Article  CAS  Google Scholar 

  83. Traynor AM, Dubey S, Eickhoff JC, Kolesar JM, Schell K, Huie MS, Groteluschen DL, Marcotte SM, Hallahan CM, Weeks HR, Wilding G, Espinoza-Delgado I, Schiller JH (2009) Vorinostat (NSC# 701852) in patients with relapsed non-small cell lung cancer: a Wisconsin Oncology Network phase II study. J Thorac Oncol 4(4):522–526

    Article  PubMed  PubMed Central  Google Scholar 

  84. Barski A, Cuddapah S, Cui KR, Roh TY, Schones DE, Wang ZB, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  85. Lee JS, Smith E, Shilatifard A (2010) The language of histone crosstalk. Cell 142:682–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Morera L, Lubbert M, Jung M (2016) Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics 8:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wang R, Deng X, Yoshioka Y, Vougiouklakis T, Park JH, Suzuki T, Dohmae N, Ueda K, Hamamoto R, Nakamura Y (2017) Effects of SMYD2-mediated EML4-ALK methylation on the signaling pathway and growth in non-small cell lung cancer cells. Cancer Sci 108(6):1203–1209. https://doi.org/10.1111/cas.13245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T, Berger SL (2006) Repression of p53 activity by Smyd2-mediated methylation. Nature 444(7119):629–632

    Article  CAS  PubMed  Google Scholar 

  89. Komatsu S, Imoto I, Tsuda H, Kozaki KI, Muramatsu T, Shimada Y, Aiko S, Yoshizumi Y, Ichikawa D, Otsuji E, Inazawa J (2009) Overexpression of SMYD2 relates to tumor cell proliferation and malignant outcome of esophageal squamous cell carcinoma. Carcinogenesis 30(7):1139–1146

    Article  CAS  PubMed  Google Scholar 

  90. Sakamoto LH, Andrade RV, Felipe MS, Motoyama AB, Pittella Silva F (2014) SMYD2 is highly expressed in pediatric acute lymphoblastic leukemia and constitutes a bad prognostic factor. Leuk Res 38(4):496–502

    Article  CAS  PubMed  Google Scholar 

  91. Sweis RF, Wang Z, Algire M, Arrowsmith CH, Brown PJ, Chiang GG, Guo J, Jakob CG, Kennedy S, Li F, Maag D, Shaw B, Soni NB, Vedadi M, Pappano WN (2015) Discovery of A-893, a new cell-active benzoxazinone inhibitor of lysine methyltransferase SYMD2. ACS Med Chem Lett 6(6):695–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen MW, Hua KT, Kao HJ, Chi CC, Wei LH, Johansson G, Shiah SG, Chen PS, Jeng YM, Cheng TY, Lai TC, Chang JS, Jan YH, Chien MH, Yang CJ, Huang MS, Hsiao M, Kuo ML (2010) H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. Cancer Res 70(20):7830–7840

    Article  CAS  PubMed  Google Scholar 

  93. Pang AL, Title AC, Rennert OM (2014) Modulation of microRNA expression in human lung cancer cells by the G9a histone methyltransferase inhibitor BIX01294. Oncol Lett 7(6):1819–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kikuchi J, Kinoshita I, Shimizu Y, Kikuchi E, Konishi J, Oizumi S, Kaga K, Matsuno Y, Nishimura M, Dosaka-Akita H (2010) Distinctive expression of the polycomb group proteins Bmi1 polycomb ring finger oncogene and enhancer of zeste homolog 2 in nonsmall cell lung cancers and their clinical and clinicopathologic significance. Cancer 116:3015–3024

    Article  CAS  PubMed  Google Scholar 

  95. Huqun IR, Zhang J, Miyazawa H, Goto Y, Shimizu Y, Hagiwara K, Koyama N (2012) Enhancer of zeste homolog 2 is a novel prognostic biomarker in nonsmall cell lung cancer. Cancer 118:1599–1606

    Article  CAS  PubMed  Google Scholar 

  96. Behrens C, Solis LM, Lin H, Yuan P, Tang X, Kadara H, Riquelme E, Galindo H, Moran CA, Kalhor N, Swisher SG, Simon GR, Stewart DJ, Lee JJ, Wistuba II (2013) EZH2 protein expression associates with the early pathogenesis, tumor progression, and prognosis of non-small cell lung carcinoma. Clin Cancer Res 19(23):6556–6565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang X, Zhao H, Lv L, Bao L, Wang X, Han S (2016) Prognostic significance of EZH2 expression in non-small cell lung cancer: a meta-analysis. Sci Rep 6:19239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gardner EE, Lok BH, Schneeberger VE, Desmeules P, Miles LA, Arnold PK, Ni A, Khodos I, de Stanchina E, Nguyen T, Sage J, Campbell JE, Ribich S, Rekhtman N, Dowlati A, Massion PP, Rudin CM, Poirier JT (2017) Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 Axis. Cancer Cell 31(2):286–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Frankel AE, Liu X, Minna JD (2016) Developing EZH2-targeted therapy for lung cancer. Cancer Discov 6(9):949–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang H, Qi J, Reyes JM, Li L, Rao PK, Li F, Lin CY, Perry JA, Lawlor MA, Federation A, De Raedt T, Li YY, Liu Y, Duarte MA, Zhang Y, Herter-Sprie GS, Kikuchi E, Carretero J, Perou CM, Reibel JB, Paulk J, Bronson RT, Watanabe H, Brainson CF, Kim CF, Hammerman PS, Brown M, Cichowski K, Long H, Bradner JE, Wong KK (2016) Oncogenic deregulation of EZH2 as an opportunity for targeted therapy in lung cancer. Cancer Discov 6(9):1006–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wu GQ, Chai KQ, Zhu XM, Jiang H, Wang X, Xue Q, Zheng AH, Zhou HY, Chen Y, Chen XC, Xiao JY, Ying XH, Wang FW, Rui T, Liao YJ, Xie D, Lu LQ, Huang DS (2016) Anti-cancer effects of curcumin on lung cancer through the inhibition of EZH2 and NOTCH1. Oncotarget 7(18):26535–26550

    PubMed  PubMed Central  Google Scholar 

  102. Chen YT, Zhu F, Lin WR, Ying RB, Yang YP, Zeng LH (2016) The novel EZH2 inhibitor, GSK126, suppresses cell migration and angiogenesis via down-regulating VEGF-A. Cancer Chemother Pharmacol 77(4):757–765

    Article  CAS  PubMed  Google Scholar 

  103. Kikuchi J, Takashina T, Kinoshita I, Kikuchi E, Shimizu Y, Sakakibara-Konishi J, Oizumi S, Marquez VE, Nishimura M, Dosaka-Akita H (2012) Epigenetic therapy with 3-deazaneplanocin a, an inhibitor of the histone methyltransferase EZH2, inhibits growth of non-small cell lung cancer cells. Lung Cancer 78(2):138–143

    Article  PubMed  Google Scholar 

  104. Hayami S, Kelly JD, Cho HS, Yoshimatsu M, Unoki M, Tsunoda T, Field HI, Neal DE, Yamaue H, Ponder BA, Nakamura Y, Hamamoto R (2011) Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int J Cancer 128(3):574–586

    Article  CAS  PubMed  Google Scholar 

  105. Lv T, Yuan D, Miao X, Lv Y, Zhan P, Shen X, Song Y (2012) Over-expression of LSD1 promotes proliferation, migration and invasion in non-small cell lung cancer. PLoS One 7(4):e35065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hazeldine S, Pachaiyappan B, Steinbergs N, Nowotarski S, Hanson AS, Casero RA Jr, Woster PM (2012) Low molecular weight amidoximes that act as potent inhibitors of lysine-specific demethylase 1. J Med Chem 55(17):7378–7391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Prusevich P, Kalin JH, Ming SA, Basso M, Givens J, Li X, Hu J, Taylor MS, Cieniewicz AM, Hsiao PY, Huang R, Roberson H, Adejola N, Avery LB, Casero RA Jr, Taverna SD, Qian J, Tackett AJ, Ratan RR, McDonald OG, Feinberg AP, Cole PA (2014) A selective phenelzine analogue inhibitor of histone demethylase LSD1. ACS Chem Biol 9(6):1284–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sharma SK, Wu Y, Steinbergs N, Crowley ML, Hanson AS, Casero RA, Woster PM (2010) (Bis)urea and (bis)thiourea inhibitors of lysine-specific demethylase 1 as epigenetic modulators. J Med Chem 53(14):5197–5212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, Weidhaas JB, Brown D, Bader AG, Slack FJ (2008) Suppression of non-small cell lung tumor development by the let-7 microRNA family. Cell Cycle 7(6):759–764

    Article  CAS  PubMed  Google Scholar 

  110. Xu G, Shao G, Pan Q, Sun L, Zheng D, Li M, Li N, Shi H, Ni Y (2017) MicroRNA-9 regulates non-small cell lung cancer cell invasion and migration by targeting eukaryotic translation initiation factor 5A2. Am J Transl Res 9:478–488

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Rai K, Takigawa N, Ito S, Kashihara H, Ichihara E, Yasuda T, Shimizu K, Tanimoto M, Kiura K (2011) Liposomal delivery of microRNA-7-expressing plasmid overcomes epidermal growth factor receptor tyrosine kinase inhibitor-resistance in lung cancer cells. Mol Cancer Ther 10:1720–1727

    Article  CAS  PubMed  Google Scholar 

  112. Wu Y, Crawford M, Mao Y, Lee RJ, Davis IC, Elton TS, Lee LJ, Nana-Sinkam SP (2013) Therapeutic delivery of microRNA-29b by cationic lipoplexes for lung cancer. Mol Ther Nucleic Acids 2:e84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Chiou GY, Cherng JY, Hsu HS, Wang ML, Tsai CM, Lu KH, Chien Y, Hung SC, Chen YW, Wong CI, Tseng LM, Huang PI, Yu CC, Hsu WH, Chiou SH (2012) Cationic polyurethanes-short branch PEI-mediated delivery of mir145 inhibited epithelial-mesenchymal transdifferentiation and cancer stem-like properties and in lung adenocarcinoma. J Control Release 159:240–250

    Article  CAS  PubMed  Google Scholar 

  114. Cameron EE, Bachman KE, Myöhänen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21(1):103–107

    Article  CAS  PubMed  Google Scholar 

  115. Weiser TS, Guo ZS, Ohnmacht GA, Parkhurst ML, Tong-On P, Marincola FM, Fischette MR, Yu X, Chen GA, Hong JA, Stewart JH, Nguyen DM, Rosenberg SA, Schrump DS (2001) Sequential 5-Aza-2 deoxycytidine-depsipeptide FR901228 treatment induces apoptosis preferentially in cancer cells and facilitates their recognition by cytolytic T lymphocytes specific for NY-ESO-1. J Immunother 24(2):151–161

    Article  CAS  PubMed  Google Scholar 

  116. Boivin AJ, Momparler LF, Hurtubise A, Momparler RL (2002) Antineoplastic action of 5-aza-2′-deoxycytidine and phenylbutyrate on human lung carcinoma cells. Anti-Cancer Drugs 13(8):869–874

    Article  CAS  PubMed  Google Scholar 

  117. Luszczek W, Cheriyath V, Mekhail TM, Borden EC (2010) Combinations of DNA methyltransferase and histone deacetylase inhibitors induce DNA damage in small cell lung cancer cells: correlation of resistance with IFN-stimulated gene expression. Mol Cancer Ther 9(8):2309–2321

    Article  CAS  PubMed  Google Scholar 

  118. Kaminskyy VO, Surova OV, Vaculova A, Zhivotovsky B (2011) Combined inhibition of DNA methyltransferase and histone deacetylase restores caspase-8 expression and sensitizes SCLC cells to TRAIL. Carcinogenesis 32(10):1450–1458

    Article  CAS  PubMed  Google Scholar 

  119. Zhu WG, Lakshmanan RR, Beal MD, Otterson GA (2001) DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res 61(4):1327–1333

    CAS  PubMed  Google Scholar 

  120. Tellez CS, Grimes MJ, Picchi MA, Liu Y, March TH, Reed MD, Oganesian A, Taverna P, Belinsky SA (2014) SGI-110 and entinostat therapy reduces lung tumor burden and reprograms the epigenome. Int J Cancer 135(9):2223–2231

    Article  CAS  PubMed  Google Scholar 

  121. Chu BF, Karpenko MJ, Liu Z, Aimiuwu J, Villalona-Calero MA, Chan KK, Grever MR, Otterson GA (2013) Phase I study of 5-aza-2′-deoxycytidine in combination with valproic acid in non-small-cell lung cancer. Cancer Chemother Pharmacol 71(1):115–121

    Article  CAS  PubMed  Google Scholar 

  122. Lin J, Gilbert J, Rudek MA, Zwiebel JA, Gore S, Jiemjit A, Zhao M, Baker SD, Ambinder RF, Herman JG, Donehower RC, Carducci MA (2009) A phase I dose-finding study of 5-azacytidine in combination with sodium phenylbutyrate in patients with refractory solid tumors. Clin Cancer Res 15(19):6241–6249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Juergens RA, Wrangle J, Vendetti FP, Murphy SC, Zhao M, Coleman B, Sebree R, Rodgers K, Hooker CM, Franco N, Lee B, Tsai S, Delgado IE, Rudek MA, Belinsky SA, Herman JG, Baylin SB, Brock MV, Rudin CM (2011) Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov 1(7):598–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sampath D, Rao VA, Plunkett W (2003) Mechanisms of apoptosis induction by nucleoside analogs. Oncogene 22(56):9063–9074

    Article  CAS  PubMed  Google Scholar 

  125. Jung Y, Park J, Kim TY, Park JH, Jong HS, Im SA, Robertson KD, Bang YJ, Kim TY (2007) Potential advantages of DNA methyltransferase 1 (DNMT1)-targeted inhibition for cancer therapy. J Mol Med (Berl) 85(10):1137–1148

    Article  CAS  Google Scholar 

  126. Chai G, Li L, Zhou W, Wu L, Zhao Y, Wang D, McNutt MA, Hu YG, Chen Y, Yang Y, Wu X, Otterson GA, Zhu WG (2008) HDAC inhibitors act with 5-aza-2′-deoxycytidine to inhibit cell proliferation by suppressing removal of incorporated abases in lung cancer cells. PLoS One 3(6):e2445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Kasinski AL, Kelnar K, Stahlhut C, Orellana E, Zhao J, Shimer E, Dysart S, Chen X, Bader AG, Slack FJ (2015) A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene 34(27):3547–3555

    Article  CAS  PubMed  Google Scholar 

  128. Noro R, Miyanaga A, Minegishi Y, Okano T, Seike M, Soeno C, Kataoka K, Matsuda K, Yoshimura A, Gemma A (2010) Histone deacetylase inhibitor enhances sensitivity of non-small-cell lung cancer cells to 5-FU/S-1 via down-regulation of thymidylate synthase expression and up-regulation of p21(waf1/cip1) expression. Cancer Sci 101(6):1424–1430

    Article  CAS  PubMed  Google Scholar 

  129. Owonikoko TK, Ramalingam SS, Kanterewicz B, Balius TE, Belani CP, Hershberger PA (2010) Vorinostat increases carboplatin and paclitaxel activity in non-small-cell lung cancer cells. Int J Cancer 126(3):743–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Luchenko VL, Salcido CD, Zhang Y, Agama K, Komlodi-Pasztor E, Murphy RF, Giaccone G, Pommier Y, Bates SE, Varticovski L (2011) Schedule-dependent synergy of histone deacetylase inhibitors with DNA damaging agents in small cell lung cancer. Cell Cycle 10(18):3119–3128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ramalingam SS, Maitland ML, Frankel P, Argiris AE, Koczywas M, Gitlitz B, Thomas S, Espinoza-Delgado I, Vokes EE, Gandara DR (2010) Carboplatin and paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J Clin Oncol 28(1):56–62

    Article  CAS  PubMed  Google Scholar 

  132. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4(4):307–320

    Article  CAS  PubMed  Google Scholar 

  133. Kim MS, Blake M, Baek JH, Kohlhagen G, Pommier Y, Carrier F (2003) Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res 63(21):7291–7300

    CAS  PubMed  Google Scholar 

  134. Liu XH, , Lu KH, Wang KM, Sun M, Zhang EB, Yang JS, Yin DD, Liu ZL, Zhou J, Liu ZJ, De W, Wang ZX (2012) MicroRNA-196a promotes non-small cell lung cancer cell proliferation and invasion through targeting HOXA5. BMC Cancer 12:34

    Article  CAS  Google Scholar 

  135. Stahlhut C, Slack FJ (2015) Combinatorial action of MicroRNAs let-7 and miR-34 effectively synergizes with erlotinib to suppress non-small cell lung cancer cell proliferation. Cell Cycle 14(13):2171–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bian HB, Pan X, Yang JS, Wang ZX, De W (2011) Upregulation of microRNA-451 increases cispaltin sensitivity of non-small cell lung cancer cell line (A549). J Exp Clin Cancer Res 30:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Seo SK, Jin HO, Woo SH, Kim YS, An S, Lee JH, Hong SI, Lee KH, Choe TB, Park IC (2011) Histone deacetylase inhibitors sensitize human non-small cell lung cancer cells to ionizing radiation through acetyl p53-mediated c-myc down-regulation. J Thorac Oncol 6(8):1313–1319

    Article  PubMed  Google Scholar 

  138. Cuneo KC, Fu A, Osusky K, Huamani J, Hallahan DE, Geng L (2007) Histone deacetylase inhibitor NVP-LAQ824 sensitizes human nonsmall cell lung cancer to the cytotoxic effects of ionizing radiation. Anti-Cancer Drugs 18(7):793–800

    Article  CAS  PubMed  Google Scholar 

  139. Rivera S, Leteur C, Mégnin F, Law F, Martins I, Kloos I, Depil S, Modjtahedi N, Perfettini JL, Hennequin C, Deutsch E (2017) Time dependent modulation of tumor radiosensitivity by a pan HDAC inhibitor: abexinostat. Oncotarget 8(34):56210–56227. https://doi.org/10.18632/oncotarget.14813

    Article  PubMed  PubMed Central  Google Scholar 

  140. Witta SE, Jotte RM, Konduri K, Neubauer MA, Spira AI, Ruxer RL, Varella-Garcia M, Bunn PA Jr, Hirsch FR (2012) Randomized phase II trial of erlotinib with and without entinostat in patients with advanced non-small-cell lung cancer who progressed on prior chemotherapy. J Clin Oncol 30(18):2248–2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Han JY, Lee SH, Lee GK, Yun T, Lee YJ, Hwang KH, Kim JY, Kim HT (2015) Phase I/II study of gefitinib (Iressa((R))) and vorinostat (IVORI) in previously treated patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol 75(3):475–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Reguart N, Rosell R, Cardenal F, Cardona AF, Isla D, Palmero R, Moran T, Rolfo C, Pallarès MC, Insa A, Carcereny E, Majem M, De Castro J, Queralt C, Molina MA, Taron M (2014) Phase I/II trial of vorinostat (SAHA) and erlotinib for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations after erlotinib progression. Lung Cancer 84(2):161–167

    Article  PubMed  Google Scholar 

  143. Meng F, Wang F, Wang L, Wong SC, Cho WC, Chan LW (2016) MiR-30a-5p overexpression may overcome EGFR inhibitor resistance through regulating PI3K?AKT signaling pathway in non-small cell lung cancer cell lines. Front Genet 7:197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Zhao FY, Han J, Chen XW, Wang J, Wang XD, Sun JG, Chen ZT (2016) miR-223 enhances the sensitivity of non-small cell lung cancer cells to erlotinib by targeting the insulin-like growth factor-1 receptor. Int J Mol Med 38(1):183–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Li J, Li X, Ren S, Chen X, Zhang Y, Zhou F, Zhao M, Zhao C, Chen X, Cheng N, Zhao Y, Zhou C, Hirsch FR (2014) miR-200c overexpression is associated with better efficacy of EGFR-TKIs in non-small cell lung cancer patients with EGFR wild-type. Oncotarget 5(17):7902–7916

    PubMed  PubMed Central  Google Scholar 

  146. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59(11):2615–2622

    CAS  PubMed  Google Scholar 

  147. Ling YH, Liebes L, Ng B, Buckley M, Elliott PJ, Adams J, Jiang JD, Muggia FM, Perez-Soler R (2002) PS-341, a novel proteasome inhibitor, induces Bcl-2 phosphorylation and cleavage in association with G2-M phase arrest and apoptosis. Mol Cancer Ther 1(10):841–849

    CAS  PubMed  Google Scholar 

  148. Aghajanian C, Soignet S, Dizon DS, Pien CS, Adams J, Elliott PJ, Sabbatini P, Miller V, Hensley ML, Pezzulli S, Canales C, Daud A, Spriggs DR (2002) A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin Cancer Res 8(8):2505–2511

    CAS  PubMed  Google Scholar 

  149. Li T, Ho L, Piperdi B, Elrafei T, Camacho FJ, Rigas JR, Perez-Soler R, Gucalp R (2010) Phase II study of the proteasome inhibitor bortezomib (PS-341, Velcade) in chemotherapy-naïve patients with advanced stage non-small cell lung cancer (NSCLC). Lung Cancer 68(1):89–93

    Article  PubMed  Google Scholar 

  150. Delinger CE, Rundall BK, Jones DR (2004) Proteasome inhibition sensitizes non-small cell lung cancer to histone deacetylase inhibitor-induced apoptosis through the generation of reactive oxygen species. J Thorac Cardiovasc Surg 128(5):740–748

    Article  CAS  Google Scholar 

  151. Hoang T, Campbell TC, Zhang C, Kim K, Kolesar JM, Oettel KR, Blank JH, Robinson EG, Ahuja HG, Kirschling RJ, Johnson PH, Huie MS, Wims ME, Larson MM, Hernan HR, Traynor AM (2014) Vorinostat and bortezomib as third-line therapy in patients with advanced non-small cell lung cancer: a Wisconsin oncology network phase II study. Investig New Drugs 32(1):195–199

    Article  CAS  Google Scholar 

  152. Millward M, Price T, Townsend A, Sweeney C, Spencer A, Sukumaran S, Longenecker A, Lee L, Lay A, Sharma G, Gemmill RM, Drabkin HA, Lloyd GK, Neuteboom ST, McConkey DJ, Palladino MA, Spear MA (2012) Phase 1 clinical trial of the novel proteasome inhibitor marizomib with the histone deacetylase inhibitor vorinostat in patients with melanoma, pancreatic and lung cancer based on in vitro assessments of the combination. Investig New Drugs 30(6):2303–2317

    Article  CAS  Google Scholar 

  153. Hanke NT, Garland LL, Baker AF (2016) Carfilzomib combined with suberanilohydroxamic acid (SAHA) synergistically promotes endoplasmic reticulum stress in non-small cell lung cancer cell lines. J Cancer Res Clin Oncol 142(3):549–560

    Article  CAS  PubMed  Google Scholar 

  154. Rao M, Chinnasamy N, Hong JA, Zhang Y, Zhang M, Xi S, Liu F, Marquez VE, Morgan RA, Schrump DS (2011) Inhibition of histone lysine methylation enhances cancer-testis antigen expression in lung cancer cells: implications for adoptive immunotherapy of cancer. Cancer Res 71(12):4192–4204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wrangle J, Wang W, Koch A, Easwaran H, Mohammad HP, Vendetti F, Vancriekinge W, Demeyer T, Du Z, Parsana P, Rodgers K, Yen RW, Zahnow CA, Taube JM, Brahmer JR, Tykodi SS, Easton K, Carvajal RD, Jones PA, Laird PW, Weisenberger DJ, Tsai S, Juergens RA, Topalian SL, Rudin CM, Brock MV, Pardoll D, Baylin SB (2013) Alterations of immune response of non-small cell lung cancer with azacytidine. Oncotarget 4(11):2067–2079

    Article  PubMed  PubMed Central  Google Scholar 

  156. Ueda R, , Kohanbash G, Sasaki K, Fujita M, Zhu X, Kastenhuber ER, McDonald HA, Potter DM, Hamilton RL, Lotze MT, Khan SA, Sobol RW, Okada H (2009) Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci U S A 106:10746–10751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lin R, Chen L, Chen G, Hu C, Jiang S, Sevilla J, Wan Y, Sampson JH, Zhu B, Li QJ (2014) Targeting miR-23a in CD8+ cytotoxic T lymphocytes prevents tumor-dependent immunosuppression. J Clin Invest 124(12):5352–5367

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duk-Hwan Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kim, D., Kim, DH. (2018). Epigenome-Based Precision Medicine in Lung Cancer. In: Dumitrescu, R., Verma, M. (eds) Cancer Epigenetics for Precision Medicine . Methods in Molecular Biology, vol 1856. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8751-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8751-1_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8750-4

  • Online ISBN: 978-1-4939-8751-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics