Skip to main content

DNA Methylation as a Biomarker of Aging in Epidemiologic Studies

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1856))

Abstract

Cancer is largely an aging disease. Accelerated biological aging may be the strongest predictor of cancer and other chronic disease risks. In the absence of reliable and quantifiable biomarkers of aging to date, it has long been observed that tumorigenesis shares distinct epigenetic alterations with the aging process. Recently, epigenetic age estimates have been developed based on the availability of genome-wide DNA methylation profiles, by applying in the prediction formula the methylation level at a subset of highly predictive methylation sites, called epigenetic clock. These DNA methylation age estimates have produced remarkably strong correlations with chronological age, with a small deviation and high reproducibility across different age groups and study populations. Moreover, an increasing number of epidemiologic studies have demonstrated an independent association of DNA methylation age or the extent of acceleration with mortality and various aging-related conditions, even after accounting for differences in chronological age and other risk factors. Although epigenetic profiles are known to be tissue-specific, both target tissue- and multiple tissue-derived estimates appear to perform well to capture what is thought to be the cumulative epigenetic drift that represents a multifactorial degenerative process across tissues and organisms. Further refinement of the epigenetic age estimates is anticipated over time to accommodate a better technological coverage of the methylome and a better understanding of the biology underlying predictive regions. Epidemiologic principles will remain critical for the evaluation of research findings involving, for example, different study populations, design, follow-up time, and quality of covariate data. Overall, the epigenetic age estimates are an exciting development with useful implications for biomedical research of healthy aging and disease prevention and control.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fraga MF, Agrelo R, Esteller M (2007) Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci 1100:60–74

    Google Scholar 

  2. Aunan JR, Cho WC, Soreide K (2017) The biology of aging and cancer: A brief overview of shared and divergent molecular hallmarks. Aging Dis 8(5):628–642

    Google Scholar 

  3. Aune D, Chan DS, Vieira AR, Navarro Rosenblatt DA, Vieira R, Greenwood DC, Kampman E, Norat T (2013) Red and processed meat intake and risk of colorectal adenomas: a systematic review and meta-analysis of epidemiological studies. Cancer Causes Control 24(4):611–627

    Google Scholar 

  4. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, Sugarbaker DJ, Yeh RF, Wiencke JK, Kelsey KT (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5(8):e1000602

    Google Scholar 

  5. Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, Glass D, Mangino M, Zhai G, Zhang F, Valdes A, Shin SY, Dempster EL, Murray RM, Grundberg E, Hedman AK, Nica A, Small KS, Mu TC, Dermitzakis ET, McCarthy MI, Mill J, Spector TD, Deloukas P (2012) Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet 8(4):e1002629

    Google Scholar 

  6. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49(2):359–367

    Google Scholar 

  7. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115

    Google Scholar 

  8. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, Beck S (2013) A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 29(2):189–196

    Google Scholar 

  9. Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K, van den Berg LH, Ophoff RA (2012) Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol 13(10):R97

    Google Scholar 

  10. Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai PC, Roetker NS, Just AC, Demerath EW, Guan W, Bressler J, Fornage M, Studenski S, Vandiver AR, Moore AZ, Tanaka T, Kiel DP, Liang L, Vokonas P, Schwartz J, Lunetta KL, Murabito JM, Bandinelli S, Hernandez DG, Melzer D, Nalls M, Pilling LC, Price TR, Singleton AB, Gieger C, Holle R, Kretschmer A, Kronenberg F, Kunze S, Linseisen J, Meisinger C, Rathmann W, Waldenberger M, Visscher PM, Shah S, Wray NR, McRae AF, Franco OH, Hofman A, Uitterlinden AG, Absher D, Assimes T, Levine ME, Lu AT, Tsao PS, Hou L, Manson JE, Carty CL, LaCroix AZ, Reiner AP, Spector TD, Feinberg AP, Levy D, Baccarelli A, van Meurs J, Bell JT, Peters A, Deary IJ, Pankow JS, Ferrucci L, Horvath S (2016) DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging (Albany NY) 8(9):1844–1865

    Google Scholar 

  11. Johnson KC, Houseman EA, King JE, Christensen BC (2017) Normal breast tissue DNA methylation differences at regulatory elements are associated with the cancer risk factor age. Breast Cancer Res 19(1):81

    Google Scholar 

  12. Horvath S, Pirazzini C, Bacalini MG, Gentilini D, Di Blasio AM, Delledonne M, Mari D, Arosio B, Monti D, Passarino G, De Rango F, D'Aquila P, Giuliani C, Marasco E, Collino S, Descombes P, Garagnani P, Franceschi C (2015) Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (Albany NY) 7(12):1159–1170

    Google Scholar 

  13. Armstrong NJ, Mather KA, Thalamuthu A, Wright MJ, Trollor JN, Ames D, Brodaty H, Schofield PR, Sachdev PS, Kwok JB (2017) Aging, exceptional longevity and comparisons of the Hannum and Horvath epigenetic clocks. Epigenomics 9(5):689–700

    Google Scholar 

  14. Thompson RF, Atzmon G, Gheorghe C, Liang HQ, Lowes C, Greally JM, Barzilai N (2010) Tissue-specific dysregulation of DNA methylation in aging. Aging Cell 9(4):506–518

    Google Scholar 

  15. Day K, Waite LL, Thalacker-Mercer A, West A, Bamman MM, Brooks JD, Myers RM, Absher D (2013) Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol 14(9):R102

    Google Scholar 

  16. Fagnoni FF, Vescovini R, Passeri G, Bologna G, Pedrazzoni M, Lavagetto G, Casti A, Franceschi C, Passeri M, Sansoni P (2000) Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood 95(9):2860–2868

    Google Scholar 

  17. Maegawa S, Lu Y, Tahara T, Lee JT, Madzo J, Liang S, Jelinek J, Colman RJ, Issa JJ (2017) Caloric restriction delays age-related methylation drift. Nat Commun 8(1):539

    Google Scholar 

  18. Petkovich DA, Podolskiy DI, Lobanov AV, Lee SG, Miller RA, Gladyshev VN (2017) Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab 25(4):954–960.e6

    Google Scholar 

  19. Wang T, Tsui B, Kreisberg JF, Robertson NA, Gross AM, Yu MK, Carter H, Brown-Borg HM, Adams PD, Ideker T (2017) Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol 18(1):57

    Google Scholar 

  20. Stubbs TM, Bonder MJ, Stark AK, Krueger F, Team BIAC, von Meyenn F, Stegle O, Reik W (2017) Multi-tissue DNA methylation age predictor in mouse. Genome Biol 18(1):68

    Google Scholar 

  21. Wagner KH, Cameron-Smith D, Wessner B, Franzke B (2016) Biomarkers of aging: from function to molecular biology. Nutrients 8(6):E338

    Google Scholar 

  22. Fortney K, Dobriban E, Garagnani P, Pirazzini C, Monti D, Mari D, Atzmon G, Barzilai N, Franceschi C, Owen AB, Kim SK (2015) Genome-wide scan informed by age-related disease identifies loci for exceptional human longevity. PLoS Genet 11(12):e1005728

    Google Scholar 

  23. Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, Gibson J, Henders AK, Redmond P, Cox SR, Pattie A, Corley J, Murphy L, Martin NG, Montgomery GW, Feinberg AP, Fallin MD, Multhaup ML, Jaffe AE, Joehanes R, Schwartz J, Just AC, Lunetta KL, Murabito JM, Starr JM, Horvath S, Baccarelli AA, Levy D, Visscher PM, Wray NR, Deary IJ (2015) DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 16:25

    Google Scholar 

  24. Christiansen L, Lenart A, Tan Q, Vaupel JW, Aviv A, McGue M, Christensen K (2016) DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 15(1):149–154

    Google Scholar 

  25. Perna L, Zhang Y, Mons U, Holleczek B, Saum KU, Brenner H (2016) Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin Epigenetics 8:64

    Google Scholar 

  26. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13:86

    Google Scholar 

  27. Horvath S, Levine AJ (2015) HIV-1 infection accelerates age according to the epigenetic clock. J Infect Dis 212(10):1563–1573

    Google Scholar 

  28. Johnson TE (2006) Recent results: biomarkers of aging. Exp Gerontol 41(12):1243–1246

    Google Scholar 

  29. Levine ME, Hosgood HD, Chen B, Absher D, Assimes T, Horvath S (2015) DNA methylation age of blood predicts future onset of lung cancer in the women's health initiative. Aging (Albany NY) 7(9):690–700

    Google Scholar 

  30. Zheng Y, Joyce BT, Colicino E, Liu L, Zhang W, Dai Q, Shrubsole MJ, Kibbe WA, Gao T, Zhang Z, Jafari N, Vokonas P, Schwartz J, Baccarelli AA, Hou L (2016) Blood epigenetic age may predict Cancer incidence and mortality. EBioMedicine 5:68–73

    Google Scholar 

  31. Ambatipudi S, Horvath S, Perrier F, Cuenin C, Hernandez-Vargas H, Le Calvez-Kelm F, Durand G, Byrnes G, Ferrari P, Bouaoun L, Sklias A, Chajes V, Overvad K, Severi G, Baglietto L, Clavel-Chapelon F, Kaaks R, Barrdahl M, Boeing H, Trichopoulou A, Lagiou P, Naska A, Masala G, Agnoli C, Polidoro S, Tumino R, Panico S, Dolle M, Peeters PHM, Onland-Moret NC, Sandanger TM, Nost TH, Weiderpass E, Quiros JR, Agudo A, Rodriguez-Barranco M, Huerta Castano JM, Barricarte A, Fernandez AM, Travis RC, Vineis P, Muller DC, Riboli E, Gunter M, Romieu I, Herceg Z (2017) DNA methylome analysis identifies accelerated epigenetic ageing associated with postmenopausal breast cancer susceptibility. Eur J Cancer 75:299–307

    Google Scholar 

  32. Durso DF, Bacalini MG, Sala C, Pirazzini C, Marasco E, Bonafe M, do Valle IF, Gentilini D, Castellani G, Faria AMC, Franceschi C, Garagnani P, Nardini C (2017) Acceleration of leukocytes' epigenetic age as an early tumor and sex-specific marker of breast and colorectal cancer. Oncotarget 8(14):23237–23245

    Google Scholar 

  33. Levine ME, Lu AT, Bennett DA, Horvath S (2015) Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer's disease related cognitive functioning. Aging (Albany NY) 7(12):1198–1211

    Google Scholar 

  34. Horvath S, Ritz BR (2015) Increased epigenetic age and granulocyte counts in the blood of Parkinson's disease patients. Aging (Albany NY) 7(12):1130–1142

    Google Scholar 

  35. Breitling LP, Saum KU, Perna L, Schottker B, Holleczek B, Brenner H (2016) Frailty is associated with the epigenetic clock but not with telomere length in a German cohort. Clin Epigenetics 8:21

    Google Scholar 

  36. Zhang M, Tartaglia MC, Moreno D, Sato C, McKeever P, Weichert A, Keith J, Robertson J, Zinman L, Rogaeva E (2017) DNA methylation age-acceleration is associated with disease duration and age at onset in C9orf72 patients. Acta Neuropathol 134(2):271–279

    Google Scholar 

  37. Anton S, Leeuwenburgh C (2013) Fasting or caloric restriction for healthy aging. Exp Gerontol 48(10):1003–1005

    Google Scholar 

  38. Li Y, Daniel M, Tollefsbol TO (2011) Epigenetic regulation of caloric restriction in aging. BMC Med 9:98

    Google Scholar 

  39. Ishikawa N, Nakamura K, Izumiyama-Shimomura N, Aida J, Matsuda Y, Arai T, Takubo K (2016) Changes of telomere status with aging: an update. Geriatr Gerontol Int 16(Suppl 1):30–42

    Google Scholar 

  40. Haycock PC, Heydon EE, Kaptoge S, Butterworth AS, Thompson A, Willeit P (2014) Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 349:g4227

    Google Scholar 

  41. Martin-Ruiz CM, Baird D, Roger L, Boukamp P, Krunic D, Cawthon R, Dokter MM, van der Harst P, Bekaert S, de Meyer T, Roos G, Svenson U, Codd V, Samani NJ, McGlynn L, Shiels PG, Pooley KA, Dunning AM, Cooper R, Wong A, Kingston A, von Zglinicki T (2015) Reproducibility of telomere length assessment: an international collaborative study. Int J Epidemiol 44(5):1673–1683

    Google Scholar 

  42. Zhang X, Zhao Q, Zhu W, Liu T, Xie SH, Zhong LX, Cai YY, Li XN, Liang M, Chen W, Hu QS, Zhang B (2017) The Association of Telomere Length in peripheral blood cells with Cancer risk: a systematic review and meta-analysis of prospective studies. Cancer Epidemiol Biomark Prev 26(9):1381–1390

    Google Scholar 

  43. Ward-Caviness CK, Nwanaji-Enwerem JC, Wolf K, Wahl S, Colicino E, Trevisi L, Kloog I, Just AC, Vokonas P, Cyrys J, Gieger C, Schwartz J, Baccarelli AA, Schneider A, Peters A (2016) Long-term exposure to air pollution is associated with biological aging. Oncotarget 7(46):74510–74525

    Google Scholar 

  44. Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, Van Djik S, Muhlhausler B, Stirzaker C, Clark SJ (2016) Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol 17(1):208

    Google Scholar 

  45. Vidal-Bralo L, Lopez-Golan Y, Gonzalez A (2016) Simplified assay for epigenetic age estimation in whole blood of adults. Front Genet 7:126

    Google Scholar 

  46. Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan H, Allayee H, Ritz BR, Chen B, Lu AT, Rickabaugh TM, Jamieson BD, Sun D, Li S, Chen W, Quintana-Murci L, Fagny M, Kobor MS, Tsao PS, Reiner AP, Edlefsen KL, Absher D, Assimes TL (2016) An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol 17(1):171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Unhee Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lim, U., Song, MA. (2018). DNA Methylation as a Biomarker of Aging in Epidemiologic Studies. In: Dumitrescu, R., Verma, M. (eds) Cancer Epigenetics for Precision Medicine . Methods in Molecular Biology, vol 1856. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8751-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8751-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8750-4

  • Online ISBN: 978-1-4939-8751-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics