Skip to main content

Engineering Pichia pastoris for the Production of Carotenoids

  • Protocol
  • First Online:
Microbial Carotenoids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1852))

Abstract

Carotenoids are one of the most diverse and widely distributed classes of pigments in the biosphere and exhibit a variety of functions in the nature. Their importance and biotechnological applications are higher and higher, but their sources are not increasing in the same exponential way. Here we describe the process of bioengineering the yeast Pichia pastoris by sequential transformation to get an astaxanthin producer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sandmann G (2001) Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys 385(1):4–12. https://doi.org/10.1006/abbi.2000.2170

    Article  PubMed  CAS  Google Scholar 

  2. Giorio G et al (2013) Elevation of lutein content in tomato: a biochemical tug-of-war between lycopene cyclases. Metab Eng 20:167–176. https://doi.org/10.1016/j.ymben.2013.10.007

    Article  PubMed  CAS  Google Scholar 

  3. Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43(3):228–265. https://doi.org/10.1016/j.plipres.2003.10.002

    Article  PubMed  CAS  Google Scholar 

  4. Sandmann G (1994) Carotenoid biosynthesis in microorganisms and plants. Eur J Biochem 223(1):7–24

    Article  CAS  PubMed  Google Scholar 

  5. Araya-Garay JM et al (2011) cDNA cloning of a novel gene codifying for the enzyme lycopene beta-cyclase from Ficus carica and its expression in Escherichia coli. Appl Microbiol Biotechnol 92(4):769–777. https://doi.org/10.1007/s00253-011-3488-8

    Article  PubMed  CAS  Google Scholar 

  6. Seddon JM et al (1994) The use of vitamin supplements and the risk of cataract among US male physicians. Am J Public Health 84(5):788–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Willett WC, Trichopoulos D (1996) Nutrition and cancer: a summary of the evidence. Cancer Causes Control 7(1):178–180

    Article  CAS  PubMed  Google Scholar 

  8. Murillo AG et al (2016) The potential of non-provitamin A carotenoids for the prevention and treatment of non-alcoholic fatty liver disease. Biology (Basel) 5(4):42. https://doi.org/10.3390/biology5040042

    Article  CAS  Google Scholar 

  9. Yang Y et al (2016) Astaxanthin prevents and reverses the activation of mouse primary hepatic stellate cells. J Nutr Biochem 29:21–26. https://doi.org/10.1016/j.jnutbio.2015.11.005

    Article  PubMed  CAS  Google Scholar 

  10. Yang Y et al (2016) Histone deacetylase 9 plays a role in the antifibrogenic effect of astaxanthin in hepatic stellate cells. J Nutr Biochem 40:172–177. https://doi.org/10.1016/j.jnutbio.2016.11.003

    Article  PubMed  CAS  Google Scholar 

  11. Yeh PT et al (2016) Astaxanthin inhibits expression of retinal oxidative stress and inflammatory mediators in streptozotocin-induced diabetic rats. PLoS One 11(1):e0146438. https://doi.org/10.1371/journal.pone.0146438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Visioli F, Artaria C (2017) Astaxanthin in cardiovascular health and disease: mechanisms of action, therapeutic merits, and knowledge gaps. Food Funct 8(1):39–63. https://doi.org/10.1039/c6fo01721e

    Article  PubMed  CAS  Google Scholar 

  13. Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of carotenoids. Mar Drugs 9(4):625–644. https://doi.org/10.3390/md9040625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Safafar H et al (2015) Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mar Drugs 13(12):7339–7356. https://doi.org/10.3390/md13127069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Poojary MM et al (2016) Innovative alternative technologies to extract carotenoids from microalgae and seaweeds. Mar Drugs 14(11):214. https://doi.org/10.3390/md14110214

    Article  PubMed Central  CAS  Google Scholar 

  16. Zhang Z et al (2017) Two-step cultivation for production of astaxanthin in Chlorella zofingiensis using a patented energy-free rotating floating photobioreactor (RFP). Bioresour Technol 224:515–522 https://doi.org/10.1016/j.biortech.2016.10.081

  17. Peng L et al (2016) Cultivation of Neochloris oleoabundans in bubble column photobioreactor with or without localized deoxygenation. Bioresour Technol 206:255–263. https://doi.org/10.1016/j.biortech.2016.01.081

    Article  PubMed  CAS  Google Scholar 

  18. Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 34(8):1396–1412. https://doi.org/10.1016/j.biotechadv.2016.10.005

    Article  PubMed  CAS  Google Scholar 

  19. Wade N et al (2005) Esterified astaxanthin levels in lobster epithelia correlate with shell colour intensity: potential role in crustacean shell colour formation. Comp Biochem Physiol B Biochem Mol Biol 141(3):307–313. https://doi.org/10.1016/j.cbpc.2005.04.004

    Article  PubMed  CAS  Google Scholar 

  20. Hix LM et al (2004) Upregulation of connexin 43 protein expression and increased gap junctional communication by water soluble disodium disuccinate astaxanthin derivatives. Cancer Lett 211(1):25–37. https://doi.org/10.1016/j.canlet.2004.01.036

    Article  PubMed  CAS  Google Scholar 

  21. Kurihara H et al (2002) Contribution of the antioxidative property of astaxanthin to its protective effect on the promotion of cancer metastasis in mice treated with restraint stress. Life Sci 70(21):2509–2520

    Article  CAS  PubMed  Google Scholar 

  22. Johnson EA et al (1980) Phaffia rhodozyma as an astaxanthin sources in salmonid diet. Aquaculture 20:123–134

    Article  Google Scholar 

  23. Bubrick P (1991) Production of astaxanthin from Haematococcus. Bioresour Technol 38:237–239

    Article  CAS  Google Scholar 

  24. Krubasik P, Sandmann G (2000) A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids. Mol Gen Genet 263(3):423–432

    Article  CAS  PubMed  Google Scholar 

  25. Lee JH et al (2004) Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. Int J Syst Evol Microbiol 54(Pt 5):1699–1702. https://doi.org/10.1099/ijs.0.63146-0

    Article  PubMed  CAS  Google Scholar 

  26. Misawa N et al (1995) Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 177(22):6575–6584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li C et al (2015) Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-d-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli. Microb Cell Factories 14:117. https://doi.org/10.1186/s12934-015-0301-x

    Article  CAS  Google Scholar 

  28. Shen HJ et al (2015) Engineering of Escherichia coli for lycopene production through promoter engineering. Curr Pharm Biotechnol 16(12):1094–1103

    Article  CAS  PubMed  Google Scholar 

  29. Seo YB et al (2015) Molecular cloning and co-expression of phytoene synthase gene from Kocuria gwangalliensis in Escherichia coli. J Microbiol Biotechnol 25(11):1801–1809. https://doi.org/10.4014/jmb.1505.05035

    Article  PubMed  CAS  Google Scholar 

  30. Li Z et al (2015) Cloning and expression of a zeta-carotene desaturase gene from Lycium chinense. J Genet 94(2):287–294

    Article  PubMed  Google Scholar 

  31. Lange N, Steinbuchel A (2011) beta-Carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media. Appl Microbiol Biotechnol 91(6):1611–1622. https://doi.org/10.1007/s00253-011-3315-2

    Article  PubMed  CAS  Google Scholar 

  32. Miura Y, Kondo K, Shimada H, Saito T, Nakamura K, Misawa N (1998) Production of lycopene by the food yeast, Candida utilis that does not naturally synthesize carotenoid. Biotechnol Bioeng 58(2–3):306–308

    Article  CAS  PubMed  Google Scholar 

  33. Shimada H et al (1998) Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol 64(7):2676–2680

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Miura Y et al (1998) Production of the carotenoids lycopene, beta-carotene, and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol 64(4):1226–1229

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Papp T et al (2006) Heterologous expression of astaxanthin biosynthesis genes in Mucor circinelloides. Appl Microbiol Biotechnol 69(5):526–531. https://doi.org/10.1007/s00253-005-0026-6

    Article  PubMed  CAS  Google Scholar 

  36. Johns AM et al (2016) Four inducible promoters for controlled gene expression in the oleaginous yeast Rhodotorula toruloides. Front Microbiol 7:1666. https://doi.org/10.3389/fmicb.2016.01666

    Article  PubMed  PubMed Central  Google Scholar 

  37. Misawa N, Shimada H (1998) Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeast. J Biotechnol 59(3):169–181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás G. Villa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Veiga-Crespo, P., Araya-Garay, J.M., Villa, T.G. (2018). Engineering Pichia pastoris for the Production of Carotenoids. In: Barreiro, C., Barredo, JL. (eds) Microbial Carotenoids. Methods in Molecular Biology, vol 1852. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8742-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8742-9_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8741-2

  • Online ISBN: 978-1-4939-8742-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics