Skip to main content

Purification and Identification of Astaxanthin and Its Novel Derivative Produced by Radio-tolerant Sphingomonas astaxanthinifaciens

  • Protocol
  • First Online:
Microbial Carotenoids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1852))

Abstract

The red diketocarotenoid, astaxanthin, exhibits extraordinary health-promoting activities such as antioxidant, anti-inflammatory, antitumor, and immune booster, which may potentially protect against many degenerative diseases such as cancers, heart diseases, and exercise-induced fatigue. These numerous health benefits and consumer interest in natural products have therefore increased the market demand of astaxanthin as a nutraceutical and medicinal ingredient in food, aquaculture feed, and pharmaceutical industries. Consequently, many research efforts have been made to discover novel microbial sources with effective biotechnological production of astaxanthin. Using a rapid screening method based on 16S rRNA gene, and effective HPLC-Diode array-MS methods for carotenoids analysis, we isolated a novel astaxanthin-producing bacterium (strain TDMA-17T) that belongs to the family Sphingomonadaceae (Asker et al., FEMS Microbiol Lett 273:140–148, 2007).

In this chapter, we provide a comprehensive description of the methods used for the analysis and identification of carotenoids produced by strain TDMA-17T. We will also describe the methods of isolation and identification for a novel bacterial carotenoid (an astaxanthin derivative), a major carotenoid that is produced by the novel strain. Finally, the identification methods of the novel strain will be summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson EA, An GH (1991) Astaxanthin from microbial sources. Crit Rev Biotechnol 11(4):297–326

    Article  CAS  Google Scholar 

  2. Nelis HJ, Deleenheer AP (1991) Microbial sources of carotenoid-pigments used in foods and feeds. J Appl Bacteriol 70(3):181–191

    Article  CAS  Google Scholar 

  3. Britton G, Liaaen-Jensen S, Pfander H (1995) Carotenoids today and challenges for the future. Birkhauser, Basel

    Google Scholar 

  4. Rufer CE et al (2008) Bioavailability of astaxanthin stereoisomers from wild (Oncorhynchus spp.) and aquacultured (Salmo salar) salmon in healthy men: a randomised, double-blind study. Br J Nutr 99(5):1048–1054

    Article  CAS  PubMed  Google Scholar 

  5. Page GI, Davies SJ (2006) Tissue astaxanthin and canthaxanthin distribution in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Comp Biochem Physiol A Mol Integr Physiol 143(1):125–132

    Article  CAS  PubMed  Google Scholar 

  6. Fujita T et al (1983) Pigmentation of cultured red sea bream with astaxanthin diester purified from krill oil. Bull Jpn Soc Sci Fish 49:1855–1865

    Article  CAS  Google Scholar 

  7. Torrissen OJ (1989) Pigmentation of salmonids—interactions of astaxanthin and canthaxanthin on pigment deposition in rainbow-trout. Aquaculture 79(1–4):363–374

    Article  CAS  Google Scholar 

  8. Bjerkeng B, Berge GM (2000) Apparent digestibility coefficients and accumulation of astaxanthin E/Z isomers in Atlantic salmon (Salmo salar L.) and Atlantic halibut (Hippoglossus hippoglossus L.). Comp Biochem Phys B 127(3):423–432

    Article  CAS  Google Scholar 

  9. An GH, Choi ES (2003) Preparation of the red yeast, Xanthophyllomyces dendrorhous, as feed additive with increased availability of astaxanthin. Biotechnol Lett 25(10):767–771

    Article  CAS  PubMed  Google Scholar 

  10. Christiansen R et al (1995) Antioxidant status and immunity in Atlantic salmon, Salmo salar L., fed semi-purified diets with and without astaxanthin supplementation. J Fish Dis 18(4):317–328

    Article  CAS  Google Scholar 

  11. Christiansen R, Torrissen OJ (1997) Effects of dietary astaxanthin supplementation on fertilization and egg survival in Atlantic salmon (Salmo salar L.). Aquaculture 153(1–2):51–62

    Article  CAS  Google Scholar 

  12. Amaya E, Nickell D (2015) Using feed to enhance the color quality of fish and crustaceans. In: Allen Davis D (ed) Feed and feeding practices in aquaculture. Woodhead Publishing, Oxford, pp 269–298

    Google Scholar 

  13. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18(4):160–167

    Article  CAS  PubMed  Google Scholar 

  14. Gorton HL, Williams WE, Vogelmann TC (2001) The light environment and cellular optics of the snow alga Chlamydomonas nivalis (Bauer) Wille. Photochem Photobiol 73(6):611–620

    Article  CAS  PubMed  Google Scholar 

  15. Gorton HL, Vogelmann TC (2003) Ultraviolet radiation and the snow alga Chlamydomonas nivalis (Bauer) Wille. Photochem Photobiol 77(6):608–615

    Article  CAS  PubMed  Google Scholar 

  16. Kim JH, Chang HI (2006) High-level production of astaxanthin by Xanthophyllomyces dendrorhous mutant JH1, using chemical and light induction. J Microbiol Biotechnol 16(3):381–385

    Article  CAS  Google Scholar 

  17. Fan L et al (1998) Does astaxanthin protect Haematococcus against light damage? Z Naturforsch C 53(1–2):93–100

    Article  CAS  PubMed  Google Scholar 

  18. Iwamoto T et al (2000) Inhibition of low-density lipoprotein oxidation by astaxanthin. J Atheroscler Thromb 7(4):216–222

    Article  CAS  PubMed  Google Scholar 

  19. O'connor I, O'brien N (1998) Modulation of UVA light-induced oxidative stress by beta-carotene, lutein and astaxanthin in cultured fibroblasts. J Dermatol Sci 16(3):226–230

    Article  CAS  PubMed  Google Scholar 

  20. Wang X, Willen R, Wadstrom T (2000) Astaxanthin-rich algal meal and vitamin C inhibit Helicobacter pylori infection in BALB/cA mice. Antimicrob Agents Chemother 44(9):2452–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jyonouchi H, Sun S, Gross M (1995) Effect of carotenoids on in vitro immunoglobulin production by human peripheral blood mononuclear cells: astaxanthin, a carotenoid without vitamin A activity, enhances in vitro immunoglobulin production in response to a T-dependent stimulant and antigen. Nutr Cancer 23(2):171–183

    Article  CAS  PubMed  Google Scholar 

  22. Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21(5):210–216

    Article  CAS  PubMed  Google Scholar 

  23. Yuan JP et al (2010) Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55(1):150–165

    Article  CAS  PubMed  Google Scholar 

  24. Mortensen A (2009) Supplements. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Nutrition and health. Birkhäuser Verlag, Basel, pp 68–82

    Google Scholar 

  25. Vaclavik VA, Christian EW (2014) Fat and oil products. In: Vaclavik VA, Christian EW (eds) Essentials of food science. Springer, New York, pp 233–261

    Chapter  Google Scholar 

  26. März U (2015) FOD025E—the global market for carotenoids. BCC Research, Wellesley, MA

    Google Scholar 

  27. Solymosi K et al (2015) Food colour additives of natural origin. In: Scotter MJ (ed) Colour additives for foods and beverages. Elsevier Ltd., Amsterdam, pp 3–34

    Google Scholar 

  28. Bi W et al (2010) Task-specific ionic liquid-assisted extraction and separation of astaxanthin from shrimp waste. J Chromatogr B Analyt Technol Biomed Life Sci 878(24):2243–2248

    Article  CAS  PubMed  Google Scholar 

  29. Franco-Zavaleta ME et al (2010) Astaxanthin extraction from shrimp wastes and its stability in 2 model systems. J Food Sci 75(5):C394–C399

    PubMed  CAS  Google Scholar 

  30. Pacheco N et al (2009) Effect of temperature on chitin and astaxanthin recoveries from shrimp waste using lactic acid bacteria. Bioresour Technol 100(11):2849–2854

    Article  CAS  PubMed  Google Scholar 

  31. An GH et al (2004) Pigmentation and delayed oxidation of broiler chickens by the red carotenoid, astaxanthin, from chemical synthesis and the yeast, Xanthophyllomyces dendrorhous. Asian Austral J Anim 17(9):1309–1314

    Article  CAS  Google Scholar 

  32. Asker D, Beppu T, Ueda K (2007) Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa, Tottori, Japan. FEMS Microbiol Lett 273(2):140–148

    Article  CAS  PubMed  Google Scholar 

  33. Asker D et al (2018) Screening and profiling of natural ketocarotenoids from environmental aquatic bacterial isolates. Food Chem 253:247–254

    Article  CAS  PubMed  Google Scholar 

  34. Asker D (2017) Isolation and characterization of a novel, highly selective astaxanthin-producing marine bacterium. J Agric Food Chem 65(41):9101–9109

    Article  CAS  PubMed  Google Scholar 

  35. Asker D et al (2012) A novel radio-tolerant astaxanthin-producing bacterium reveals a new astaxanthin derivative: astaxanthin dirhamnoside. In: Barredo J-L (ed) Microbial carotenoids from bacteria and microalgae: methods and protocols. Humana Press, New York, pp 61–97

    Chapter  Google Scholar 

  36. Asker D et al (2012) Isolation, characterization, and diversity of novel radiotolerant carotenoid-producing bacteria. In: Barredo J-L (ed) Microbial carotenoids from bacteria and microalgae: methods and protocols. Humana Press, New York, pp 21–60

    Chapter  Google Scholar 

  37. Asker D et al (2009) Astaxanthin dirhamnoside, a new astaxanthin derivative produced by a radio-tolerant bacterium, Sphingomonas astaxanthinifaciens. J Antibiot (Tokyo) 62(7):397–399

    Article  CAS  Google Scholar 

  38. Asker D, Beppu T, Ueda K (2007) Unique diversity of carotenoid-producing bacteria isolated from Misasa, a radioactive site in Japan. Appl Microbiol Biotechnol 77(2):383–392

    Article  CAS  PubMed  Google Scholar 

  39. Asker D, Isaka K (2006) Production of astaxanthin by microorganisms. Office TP, Japan. Patent JP340676A

    Google Scholar 

  40. Del Rio E et al (2008) Efficiency assessment of the one-step production of astaxanthin by the microalga Haematococcus pluvialis. Biotechnol Bioeng 100(2):397–402

    Article  CAS  PubMed  Google Scholar 

  41. Lubián LM et al (2000) Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J Appl Phycol 12(3):249–255

    Article  Google Scholar 

  42. De La Fuente JL et al (2010) High-titer production of astaxanthin by the semi-industrial fermentation of Xanthophyllomyces dendrorhous. J Biotechnol 148(2–3):144–146

    Article  CAS  PubMed  Google Scholar 

  43. Jacobson GK et al. (2003) Astaxanthin over-producing strains of Phaffia rhodozyma, methods for their cultivation, and their use in animal feeds. US patent 20030049241

    Google Scholar 

  44. Liu YS, Wu JY (2006) Hydrogen peroxide-induced astaxanthin biosynthesis and catalase activity in Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 73(3):663–668

    Article  CAS  PubMed  Google Scholar 

  45. Calo P et al (1995) Ketocarotenoids in halobacteria: 3-hydroxy-echinenone and trans-astaxanthin. J Appl Bacteriol 79:282

    Article  CAS  Google Scholar 

  46. Yokoyama A, Izumide H, Miki W (1994) Production of astaxanthin and 4-ketozeaxanthin by the marine bacterium, Agrobacterium aurantiacum. Biosci Biotechnol Biochem 58:1842–1844

    Article  CAS  Google Scholar 

  47. Tsubokura A, Yoneda H, Mizuta H (1999) Paracoccus carotinifaciens sp. nov., a new aerobic gram-negative astaxanthin-producing bacterium. Int J Syst Bacteriol 49(Pt 1):277–282

    Article  CAS  PubMed  Google Scholar 

  48. Yokoyama A et al (1996) New trihydroxy-keto-carotenoids isolated from an astaxanthin-producing marine bacterium. Biosci Biotechnol Biochem 60:200–203

    Article  CAS  PubMed  Google Scholar 

  49. Osanjo GO et al (2009) A salt lake extremophile, Paracoccus bogoriensis sp. nov., efficiently produces xanthophyll carotenoids. Afr J Microbiol Res 3(8):426–433

    CAS  Google Scholar 

  50. Hirasawa K, Tsuborkura A (2014). Method for separating carotenoid. US Patent 8853460B2

    Google Scholar 

  51. Bubrick P (1991) Production of astaxanthin from Haematococcus. Bioresour Technol 38:237–239

    Article  CAS  Google Scholar 

  52. Miller MW, Yoneyama M, Soneda M (1976) Phaffia, a new yeast genus in the Deuteromycotina (Blastomycetes). Int J Syst Bacteriol 26:286–291

    Article  Google Scholar 

  53. Harker M, Hirschberg J, Oren A (1998) Paracoccus marcusii sp. nov., an orange gram-negative coccus. Int J Syst Bacteriol 48(Pt 2):543–548

    Article  PubMed  Google Scholar 

  54. Lee JH et al (2004) Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. Int J Syst Evol Microbiol 54(Pt 5):1699–1702

    Article  CAS  PubMed  Google Scholar 

  55. Kametani K, Matsumura T (1983) Determination of 238U, 234U, 226Ra and 228Ra in spring waters of sanin district. Radioisotopes 32(1):18–21

    Article  CAS  PubMed  Google Scholar 

  56. Nelis HJ, De Leenheer AP (1989) Profiling and quantitation of bacterial carotenoids by liquid chromatography and photodiode array detection. Appl Environ Microbiol 55(12):3065–3071

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids handbook. Birkhäuser, Basel

    Book  Google Scholar 

  58. Takaichi S et al (2003) Fatty acids of astaxanthin esters in krill determined by mild mass spectrometry. Comp Biochem Physiol B Biochem Mol Biol 136(2):317–322

    Article  CAS  PubMed  Google Scholar 

  59. Breithaupt DE (2004) Identification and quantification of astaxanthin esters in shrimp (Pandalus borealis) and in a microalga (Haematococcus pluvialis) by liquid chromatography-mass spectrometry using negative ion atmospheric pressure chemical ionization. J Agric Food Chem 52(12):3870–3875

    Article  CAS  PubMed  Google Scholar 

  60. Matsuno T et al (1984) The occurence of enantiomeric and meso-astaxanthin in aquatic animals. Bull Jpn Soc Sci Fish 50:1589–1592

    Article  CAS  Google Scholar 

  61. Johnson EA, Schroeder W (1995) Astaxanthin from the yeast Phaffia rhodozyma. Stud Mycol 38:81–90

    Google Scholar 

  62. Rønneberg H et al (1980) Natural occurrence of enatiomeric and meso-astaxanthin 1. Ex lobster eggs (Homarus gammarus). Helv Chim Acta 63:711–715

    Article  Google Scholar 

  63. Bernhard K et al (1982) Carotenoids of the carotenoprotein asteriarubin. Optical purity of asterinic acid. Helv Chim Acta 65:2224–2229

    Article  CAS  Google Scholar 

  64. Yokoyama A, Adachi K, Shizuri Y (1995) New carotenoid glucosides, astaxanthin glucoside and adonixanthin glucoside, isolated from the astaxanthin-producing marine bacterium, Agrobacterium aurantiacum. J Nat Prod 58:1929–1933

    Article  CAS  Google Scholar 

  65. Misawa N, Shimada H (1998) Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J Biotechnol 59(3):169–181

    Article  CAS  Google Scholar 

  66. Maoka T, Tsushima M, Matsuno T (1989) New acetylenic carotenoids from the starfishes Asterina pectinifera and Asterias amurensis. Comp Biochem Physiol 93:829–834

    Google Scholar 

  67. Maoka T et al (1985) Stereochemical investigation of the carotenoids in the antarctic krill Euphausia superba. Bull Jpn Soc Sci Fish 51:1671–1673

    Article  CAS  Google Scholar 

  68. Hertzberg S et al (1983) Carotenoid sulfates: 2. Structural elucidation of bastaxanthin. Acta Chem Scand 37:267–280

    Article  Google Scholar 

  69. Cowan ST (1968) A dictionary of microbial taxonomic usage. Oliver & Boyd, Edinburgh

    Google Scholar 

  70. Staley JT, Krieg NJ (1984) Classification of prokaryotic organisms: an overview. The Williams & Wilkins Co., Baltimore

    Google Scholar 

  71. Vandamme P et al (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60(2):407–438

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Colwell RR (1970) Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 104:410–433

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Murray RGE et al (1990) Report of the Ad-Hoc committee on approaches to taxonomy within the Proteobacteria. Int J Syst Bacteriol 40(2):213–215

    Article  Google Scholar 

  74. Tindall BJ et al (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60(Pt 1):249–266

    Article  CAS  PubMed  Google Scholar 

  75. Egan S, Thomas T, Kjelleberg S (2008) Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Curr Opin Microbiol 11(3):219–225

    Article  CAS  PubMed  Google Scholar 

  76. Schleifer KH, Ludwig W (1989) Phylogenetic relationships of bacteria. Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  77. Stackebrandt E et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    PubMed  CAS  Google Scholar 

  78. Stackebrandt E, Goebel BM (1994) A place for DNA–DNA reassociation and 16s ribosomal-RNA sequence-analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44(4):846–849

    Article  CAS  Google Scholar 

  79. Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221–271

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Fox GE, Wisotzkey JD, Jurtshuk P Jr (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42(1):166–170

    Article  CAS  PubMed  Google Scholar 

  81. Martinez-Murcia AJ, Collins MD (1990) A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 70(1):73–83

    Article  CAS  Google Scholar 

  82. Wayne LG et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37(4):463–464

    Article  Google Scholar 

  83. Johnson JL (1984) Nucleic acids in bacterial classification. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  84. Yarza P et al (2008) The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31(4):241–250

    Article  CAS  PubMed  Google Scholar 

  85. Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51(Pt 4):1405–1417

    Article  CAS  PubMed  Google Scholar 

  86. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  87. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  88. Beveridge TJ, Popkin TJ, Cole RM (1994) Electron microscopy. In P. Gerhardt (ed.), Methods for general molecular bacteriology. American Society for Microbiology, Washington, D.C., pp 42–71

    Google Scholar 

  89. Norris JR, Ribbons DW, Varma AK (1985) Methods in microbiology. Academic Press, London

    Google Scholar 

  90. Cowan ST, Steel KJ (1993) Manual for the identification of medical bacteria. Cambridge University Press, London

    Google Scholar 

  91. Collins MD (1994) Isoprenoid quinones. In: O’Donnell MGAG (ed) Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 265–310

    Google Scholar 

  92. Kawahara K et al (1991) Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis. FEBS Lett 292(1–2):107–110

    PubMed  CAS  Google Scholar 

  93. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    Article  CAS  Google Scholar 

  94. Mesbah M, Whitman WB (1989) Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479(2):297–306

    Article  CAS  PubMed  Google Scholar 

  95. Meyers SP, Bligh D (1981) Characterization of astaxanthin pigments from heat-processed crawfish waste. J Agric Food Chem 29(3):505–508

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Asker, D., Awad, T.S., Beppu, T., Ueda, K. (2018). Purification and Identification of Astaxanthin and Its Novel Derivative Produced by Radio-tolerant Sphingomonas astaxanthinifaciens. In: Barreiro, C., Barredo, JL. (eds) Microbial Carotenoids. Methods in Molecular Biology, vol 1852. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8742-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8742-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8741-2

  • Online ISBN: 978-1-4939-8742-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics