Skip to main content

Profiling of MicroRNA and Protein from Purified Synaptoneurosomes in a Neurodegenerative Disease Model

  • Protocol
  • First Online:
Synaptosomes

Part of the book series: Neuromethods ((NM,volume 141))

  • 1036 Accesses

Abstract

The synaptic connections between neurons become lost at early stages of prion disease, often long before clinical signs of disease are detectable. In addition, microRNAs play an important role in modulating the localized protein synthesis at the synapse by binding to and regulating mRNA transcripts, of which some microRNAs have been attributed to dendritic remodeling. In the method described here, we simultaneously extracted protein and total RNA from purified synaptoneurosomes that were isolated from disease-affected forebrain and hippocampus tissue from mice infected with the RML strain of scrapie, a model of neurodegeneration. The synaptic protein samples contained enough material to perform Western blot analysis for detection of individual proteins of interest and to perform a more global proteome screen using mass spectrometry. For the isolated RNA, we describe how to screen hundreds of unique microRNAs using a RT-qPCR array. The concurrent detection of changes in protein and RNA at synapses during neurodegenerative disease, particularly at early stages where synaptic loss is reversible, is useful to illuminate the synaptic landscape of not only prion diseases but also other neurodegenerative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scheff SW, Price DA (2006) Alzheimer’s disease-related alterations in synaptic density: neocortex and hippocampus. J Alzheimers Dis 9:101–115

    Article  Google Scholar 

  2. Koffie RM, Hyman BT, Spires-Jones TL (2011) Alzheimer’s disease: synapses gone cold. Mol Neurodegener 6:63. https://doi.org/10.1186/1750-1326-6-63

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ferrer I, Costa F, Grau Veciana JM (1981) Creutzfeldt-Jacob disease: a golgi study. Neuropathol Appl Neurobiol 7:237–242

    Article  CAS  Google Scholar 

  4. Landis DM, Williams RS, Masters CL (1981) Golgi and electronmicroscopic studies of spongiform encephalopathy. Neurology 31:538–549

    Article  CAS  Google Scholar 

  5. Hogan RN, Baringer JR, Prusiner SB (1987) Scrapie infection diminishes spines and increases varicosities of dendrites in hamsters: a quantitative Golgi analysis. J Neuropathol Exp Neurol 46:461–473

    Article  CAS  Google Scholar 

  6. Johnston AR, Black C, Fraser J, MacLeod N (1997) Scrapie infection alters the membrane and synaptic properties of mouse hippocampal CA1 pyramidal neurones. J Physiol 500(Pt 1):1–15

    Article  CAS  Google Scholar 

  7. Belichenko PV, Brown D, Jeffrey M, Fraser JR (2000) Dendritic and synaptic alterations of hippocampal pyramidal neurones in scrapie-infected mice. Neuropathol Appl Neurobiol 26:143–149 doi:nan232 [pii]

    Article  CAS  Google Scholar 

  8. Jeffrey M, Halliday WG, Bell J, Johnston AR, MacLeod NK, Ingham C, Sayers AR, Brown DA, Fraser JR (2000) Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus. Neuropathol Appl Neurobiol 26:41–54 doi:nan216 [pii]

    Article  CAS  Google Scholar 

  9. Fuhrmann M, Mitteregger G, Kretzschmar H, Herms J (2007) Dendritic pathology in prion disease starts at the synaptic spine. J Neurosci 27:6224–6233 doi:27/23/6224 [pii]

    Article  CAS  Google Scholar 

  10. Campeau JL, Wu G, Bell JR, Rasmussen J, Sim VL (2013) Early increase and late decrease of purkinje cell dendritic spine density in prion-infected organotypic mouse cerebellar cultures. PLoS One 8:e81776. https://doi.org/10.1371/journal.pone.0081776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580. https://doi.org/10.1002/ana.410300410

    Article  CAS  Google Scholar 

  12. Cunningham C, Deacon R, Wells H, Boche D, Waters S, Diniz CP, Scott H, Rawlins JN, Perry VH (2003) Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease. Eur J Neurosci 17:2147–2155 doi:2662 [pii]

    Article  CAS  Google Scholar 

  13. Hilton KJ, Cunningham C, Reynolds RA, Perry VH (2013) Early hippocampal synaptic loss precedes neuronal loss and associates with early behavioural deficits in three distinct strains of prion disease. PLoS One 8:e68062. https://doi.org/10.1371/journal.pone.0068062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kitamoto T, Shin RW, Doh-ura K, Tomokane N, Miyazono M, Muramoto T, Tateishi J (1992) Abnormal isoform of prion proteins accumulates in the synaptic structures of the central nervous system in patients with Creutzfeldt-Jakob disease. Am J Pathol 140:1285–1294

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Clinton J, Forsyth C, Royston MC, Roberts GW (1993) Synaptic degeneration is the primary neuropathological feature in prion disease: a preliminary study. Neuroreport 4:65–68

    Article  CAS  Google Scholar 

  16. Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68:1501–1508 doi:68/18/1501 [pii]

    Article  CAS  Google Scholar 

  17. Siskova Z, Page A, O’Connor V, Perry VH (2009) Degenerating synaptic boutons in prion disease: microglia activation without synaptic stripping. Am J Pathol 175:1610–1621. https://doi.org/10.2353/ajpath.2009.090372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mallucci GR, White MD, Farmer M, Dickinson A, Khatun H, Powell AD, Brandner S, Jefferys JG, Collinge J (2007) Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron 53:325–335 doi:S0896-6273(07)00008-6 [pii]

    Article  CAS  Google Scholar 

  19. Moreno JA, Halliday M, Molloy C, Radford H, Verity N, Axten JM, Ortori CA, Willis AE, Fischer PM, Barrett DA, Mallucci GR (2013) Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med 5:206ra138. https://doi.org/10.1126/scitranslmed.3006767

    Article  CAS  PubMed  Google Scholar 

  20. Halliday M, Radford H, Sekine Y, Moreno J, Verity N, le Quesne J, Ortori CA, Barrett DA, Fromont C, Fischer PM, Harding HP, Ron D, Mallucci GR (2015) Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death Dis 6:e1672. https://doi.org/10.1038/cddis.2015.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hollingsworth EB, McNeal ET, Burton JL, Williams RJ, Daly JW, Creveling CR (1985) Biochemical characterization of a filtered synaptoneurosome preparation from Guinea pig cerebral cortex: cyclic adenosine 3′:5′-monophosphate-generating systems, receptors, and enzymes. J Neurosci 5:2240–2253

    Article  CAS  Google Scholar 

  22. Quinlan EM, Olstein DH, Bear MF (1999) Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proc Natl Acad Sci U S A 96:12876–12880

    Article  CAS  Google Scholar 

  23. Steward O, Falk PM, Torre ER (1996) Ultrastructural basis for gene expression at the synapse: synapse-associated polyribosome complexes. J Neurocytol 25:717–734

    Article  CAS  Google Scholar 

  24. Steward O, Wallace CS, Lyford GL, Worley PF (1998) Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21:741–751 doi:S0896-6273(00)80591-7 [pii]

    Article  CAS  Google Scholar 

  25. Gardiol A, Racca C, Triller A (1999) Dendritic and postsynaptic protein synthetic machinery. J Neurosci 19:168–179

    Article  CAS  Google Scholar 

  26. Schratt G (2009) microRNAs at the synapse. Nat Rev Neurosci 10:842–849. https://doi.org/10.1038/nrn2763

    Article  CAS  PubMed  Google Scholar 

  27. Lugli G, Larson J, Demars MP, Smalheiser NR (2012) Primary microRNA precursor transcripts are localized at post-synaptic densities in adult mouse forebrain. J Neurochem 123:459–466. https://doi.org/10.1111/j.1471-4159.2012.07921.x

    Article  CAS  PubMed  Google Scholar 

  28. Hanus C, Schuman EM (2013) Proteostasis in complex dendrites. Nat Rev Neurosci 14:638–648. https://doi.org/10.1038/nrn3546

    Article  CAS  Google Scholar 

  29. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8:1051–1058 doi: nn1503 [pii]

    Article  CAS  Google Scholar 

  30. Kelly BL, Ferreira A (2006) Beta-amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. J Biol Chem 281:28079–28089 doi: M605081200 [pii]

    Article  CAS  Google Scholar 

  31. Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807 doi:27/4/796 [pii]

    Article  CAS  Google Scholar 

  32. Viola KL, Velasco PT, Klein WL (2008) Why Alzheimer’s is a disease of memory: the attack on synapses by A beta oligomers (ADDLs). J Nutr Health Aging 12:51S–57S

    Article  CAS  Google Scholar 

  33. Chiesa R, Piccardo P, Biasini E, Ghetti B, Harris DA (2008) Aggregated, wild-type prion protein causes neurological dysfunction and synaptic abnormalities. J Neurosci 28:13258–13267. https://doi.org/10.1523/JNEUROSCI.3109-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chang RY, Etheridge N, Nouwens AS, Dodd PR (2015) SWATH analysis of the synaptic proteome in Alzheimer's disease. Neurochem Int 87:1–12. https://doi.org/10.1016/j.neuint.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  35. Williams C, Mehrian Shai R, Wu Y, Hsu YH, Sitzer T, Spann B, McCleary C, Mo Y, Miller CA (2009) Transcriptome analysis of synaptoneurosomes identifies neuroplasticity genes overexpressed in incipient Alzheimer's disease. PLoS One 4:e4936. https://doi.org/10.1371/journal.pone.0004936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McNeill E, Van Vactor D (2012) MicroRNAs shape the neuronal landscape. Neuron 75:363–379. https://doi.org/10.1016/j.neuron.2012.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saba R, Goodman CD, Huzarewich RL, Robertson C, Booth SA (2008) A miRNA signature of prion induced neurodegeneration. PLoS One 3:e3652. https://doi.org/10.1371/journal.pone.0003652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Majer A, Medina SJ, Niu Y, Abrenica B, Manguiat KJ, Frost KL, Philipson CS, Sorensen DL, Booth SA (2012) Early mechanisms of pathobiology are revealed by transcriptional temporal dynamics in hippocampal CA1 neurons of prion infected mice. PLoS Pathog 8:e1003002. https://doi.org/10.1371/journal.ppat.1003002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Montag J, Hitt R, Opitz L, Schulz-Schaeffer WJ, Hunsmann G, Motzkus D (2009) Upregulation of miRNA hsa-miR-342-3p in experimental and idiopathic prion disease. Mol Neurodegener 4:36. https://doi.org/10.1186/1750-1326-4-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Karnati HK, Panigrahi MK, Gutti RK, Greig NH, Tamargo IA (2015) miRNAs: key players in neurodegenerative disorders and epilepsy. J Alzheimers Dis 48:563–580. https://doi.org/10.3233/JAD-150395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport 18:297–300. https://doi.org/10.1097/WNR.0b013e3280148e8b

    Article  CAS  PubMed  Google Scholar 

  42. Bicker S, Lackinger M, Weiss K, Schratt G (2014) MicroRNA-132, −134, and −138: a microRNA troika rules in neuronal dendrites. Cell Mol Life Sci 71:3987–4005. https://doi.org/10.1007/s00018-014-1671-7

    Article  CAS  PubMed  Google Scholar 

  43. Ye Y, Xu H, Su X, He X (2016) Role of MicroRNA in governing synaptic plasticity. Neural Plast 2016:4959523. https://doi.org/10.1155/2016/4959523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boese AS, Saba R, Campbell K, Majer A, Medina S, Burton L, Booth TF, Chong P, Westmacott G, Dutta SM, Saba JA, Booth SA (2015) MicroRNA abundance is altered in synaptoneurosomes during prion disease. Mol Cell Neurosci 71:13–24 doi:S1044-7431(15)30041-5 [pii]

    Article  Google Scholar 

  45. Verity MA (1972) Cation modulation of synaptosomal respiration. J Neurochem 19:1305–1317

    Article  CAS  Google Scholar 

  46. Wanet A, Tacheny A, Arnould T, Renard P (2012) miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res 40:4742–4753. https://doi.org/10.1093/nar/gks151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mestdagh P, Hartmann N, Baeriswyl L, Andreasen D, Bernard N, Chen C, Cheo D, D'Andrade P, DeMayo M, Dennis L, Derveaux S, Feng Y, Fulmer-Smentek S, Gerstmayer B, Gouffon J, Grimley C, Lader E, Lee KY, Luo S, Mouritzen P, Narayanan A, Patel S, Peiffer S, Ruberg S, Schroth G, Schuster D, Shaffer JM, Shelton EJ, Silveria S, Ulmanella U, Veeramachaneni V, Staedtler F, Peters T, Guettouche T, Wong L, Vandesompele J (2014) Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods 11:809–815. https://doi.org/10.1038/nmeth.3014

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie A. Booth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boese, A.S., Majer, A., Booth, S.A. (2018). Profiling of MicroRNA and Protein from Purified Synaptoneurosomes in a Neurodegenerative Disease Model. In: Murphy, K. (eds) Synaptosomes. Neuromethods, vol 141. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8739-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8739-9_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8738-2

  • Online ISBN: 978-1-4939-8739-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics