Skip to main content

SMPL Synaptic Membranes: Nanodisc-Mediated Synaptic Membrane Mimetics Expand the Toolkit for Drug Discovery and the Molecular Cell Biology of Synapses

  • Protocol
  • First Online:
Synaptosomes

Part of the book series: Neuromethods ((NM,volume 141))

Abstract

We describe in detail how proteins of synaptic membranes can be extracted and reconstituted within “Nanodiscs” which renders them soluble in aqueous solutions. Each Nanodisc is a nanometer-scaled lipid bilayer containing an individual membrane protein. The method can provide a soluble membrane protein library (SMPL) from any tissue fraction, notably from the standpoint of this treatise, from synaptosome plasma membranes (SMPL synaptic membranes). Nanodiscs facilitate investigations of membrane proteins that are difficult to tease apart from protein-protein complexes while at the same time maintaining conformational integrity. The procedure captures virtually all membrane proteins in a manner that preserves their activities in soluble form. The usefulness of SMPL synaptic membranes is exemplified by experiments that concern the specific binding of Alzheimer’s-related amyloid β oligomers (AβOs). AβO binding to SMPL synaptic membranes is saturable, has the same high affinity found in cell-based assays, and is mediated adventitiously by particular proteins. Immunoaffinity isolation experiments have identified one AβO toxin “receptor” as the NaK ATPase α3 (NKAα3). For drug discovery, recombinant membrane proteins in Nanodiscs can be readily coupled to high-throughput screening platforms; SMPL synaptic membranes can also be readily coupled and used for unbiased high-throughput screening of unknown targets. SMPL synaptic membranes, and analogous organelle libraries, offer new resources for the CNS membrane protein toolkit with a wide array of applications to synapse molecular cell biology and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

AβOs:

Amyloid beta oligomers

CNS:

Central nervous system

MP:

Membrane protein

MSP:

Membrane scaffold protein

MW:

Molecular weight

NaKAα3:

Sodium potassium ATPase alpha3

PL:

Phospholipid

PSD:

Postsynaptic density

SEC:

Size-exclusion chromatography

SMPL:

Soluble membrane protein library

References

  1. Whittaker VP (1993) Thirty years of synaptosome research. J Neurocytol 22(9):735–742

    Article  CAS  Google Scholar 

  2. McIlwain H (1975) The Second Thudichum Lecture. Cerebral isolates and neurochemical discovery. Biochem Soc Trans 3(5):579–590

    Article  CAS  Google Scholar 

  3. Abbott MA, Wells DG, Fallon JR (1999) The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J Neurosci 19(17):7300–7308

    Article  CAS  Google Scholar 

  4. Fein JA, Sokolow S, Miller CA, Vinters HV, Yang F, Cole GM, Gylys KH (2008) Co-localization of amyloid beta and tau pathology in Alzheimer’s disease synaptosomes. Am J Pathol 172(6):1683–1692. https://doi.org/10.2353/ajpath.2008.070829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Henkins KM, Sokolow S, Miller CA, Vinters HV, Poon WW, Cornwell LB, Saing T, Gylys KH (2012) Extensive p-tau pathology and SDS-stable p-tau oligomers in Alzheimer’s cortical synapses. Brain Pathol 22(6):826–833. https://doi.org/10.1111/j.1750-3639.2012.00598.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sokolow S, Henkins KM, Williams IA, Vinters HV, Schmid I, Cole GM, Gylys KH (2012) Isolation of synaptic terminals from Alzheimer’s disease cortex. Cytometry A 81(3):248–254. https://doi.org/10.1002/cyto.a.22009

    Article  CAS  PubMed  Google Scholar 

  7. Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H, Schindzielorz A, Okochi M, Leimer U, van Der Putten H, Probst A, Kremmer E, Kretzschmar HA, Haass C (2000) Subcellular localization of wild-type and Parkinson’s disease-associated mutant alpha -synuclein in human and transgenic mouse brain. J Neurosci 20(17):6365–6373

    Article  CAS  Google Scholar 

  8. Chen RH, Wislet-Gendebien S, Samuel F, Visanji NP, Zhang G, Marsilio D, Langman T, Fraser PE, Tandon A (2013) Alpha-Synuclein membrane association is regulated by the Rab3a recycling machinery and presynaptic activity. J Biol Chem 288(11):7438–7449. https://doi.org/10.1074/jbc.M112.439497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Betzer C, Movius AJ, Shi M, Gai WP, Zhang J, Jensen PH (2015) Identification of synaptosomal proteins binding to monomeric and oligomeric alpha-synuclein. PLoS One 10(2):e0116473. https://doi.org/10.1371/journal.pone.0116473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Denisov IG, Sligar SG (2017) Nanodiscs in membrane biochemistry and biophysics. Chem Rev 117(6):4669–4713. https://doi.org/10.1021/acs.chemrev.6b00690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2(8):853–856. https://doi.org/10.1021/nl025623k

    Article  CAS  Google Scholar 

  12. Wilcox KC, Marunde MR, Das A, Velasco PT, Kuhns BD, Marty MT, Jiang H, Luan CH, Sligar SG, Klein WL (2015) Nanoscale synaptic membrane mimetic allows unbiased high throughput screen that targets binding sites for Alzheimer’s-Associated Abeta Oligomers. PLoS One 10(4):e0125263. https://doi.org/10.1371/journal.pone.0125263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marty MT, Wilcox KC, Klein WL, Sligar SG (2013) Nanodisc-solubilized membrane protein library reflects the membrane proteome. Anal Bioanal Chem 405(12):4009–4016. https://doi.org/10.1007/s00216-013-6790-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. DiChiara T, DiNunno N, Clark J, Bu RL, Cline EN, Rollins MG, Gong Y, Brody DL, Sligar SG, Velasco PT, Viola KL, Klein WL (2017) Alzheimer’s toxic amyloid beta oligomers: unwelcome visitors to the Na/K ATPase alpha3 Docking Station. Yale J Biol Med 90(1):45–61

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK, Atkins WM, Sligar SG (2009) Chapter 11 – reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–231. https://doi.org/10.1016/S0076-6879(09)64011-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luthra A, Gregory M, Grinkova YV, Denisov IG, Sligar SG (2013) Nanodiscs in the studies of membrane-bound cytochrome P450 enzymes. Methods Mol Biol 987:115–127. https://doi.org/10.1007/978-1-62703-321-3_10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Denisov IG, Sligar SG (2016) Nanodiscs for structural and functional studies of membrane proteins. Nat Struct Mol Biol 23(6):481–486. https://doi.org/10.1038/nsmb.3195

    Article  CAS  PubMed  Google Scholar 

  18. Bayburt TH, Leitz AJ, Xie G, Oprian DD, Sligar SG (2007) Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J Biol Chem 282(20):14875–14881. https://doi.org/10.1074/jbc.M701433200

    Article  CAS  PubMed  Google Scholar 

  19. Bayburt TH, Sligar SG (2010) Membrane protein assembly into nanodiscs. FEBS Lett 584(9):1721–1727. https://doi.org/10.1016/j.febslet.2009.10.024

    Article  CAS  PubMed  Google Scholar 

  20. Bayburt TH, Vishnivetskiy SA, McLean MA, Morizumi T, Huang CC, Tesmer JJ, Ernst OP, Sligar SG, Gurevich VV (2011) Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem 286(2):1420–1428. https://doi.org/10.1074/jbc.M110.151043

    Article  CAS  PubMed  Google Scholar 

  21. Civjan NR, Bayburt TH, Schuler MA, Sligar SG (2003) Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. BioTechniques 35(3):556–560 562–553

    CAS  PubMed  Google Scholar 

  22. Marty MT, Zhang H, Cui W, Blankenship RE, Gross ML, Sligar SG (2012) Native mass spectrometry characterization of intact nanodisc lipoprotein complexes. Anal Chem 84(21):8957–8960. https://doi.org/10.1021/ac302663f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marty MT, Das A, Sligar SG (2012) Ultra-thin layer MALDI mass spectrometry of membrane proteins in nanodiscs. Anal Bioanal Chem 402(2):721–729. https://doi.org/10.1007/s00216-011-5512-3

    Article  CAS  PubMed  Google Scholar 

  24. Marty MT, Hoi KK, Robinson CV (2016) Interfacing membrane mimetics with mass spectrometry. Acc Chem Res 49(11):2459–2467. https://doi.org/10.1021/acs.accounts.6b00379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hoi KK, Robinson CV, Marty MT (2016) Unraveling the composition and behavior of heterogeneous lipid nanodiscs by mass spectrometry. Anal Chem 88(12):6199–6204. https://doi.org/10.1021/acs.analchem.6b00851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95(11):6448–6453

    Article  CAS  Google Scholar 

  27. De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, Klein WL (2007) Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282(15):11590–11601. https://doi.org/10.1074/jbc.M607483200

    Article  CAS  PubMed  Google Scholar 

  28. Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27(4):796–807. https://doi.org/10.1523/jneurosci.3501-06.2007

    Article  CAS  PubMed  Google Scholar 

  29. De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN, Bigio EH, Jerecic J, Acton PJ, Shughrue PJ, Chen-Dodson E, Kinney GG, Klein WL (2008) Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by A beta oligomers. Neurobiol Aging 29(9):1334–1347. https://doi.org/10.1016/j.neurobiolaging.2007.02.029

    Article  CAS  Google Scholar 

  30. De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, Viola KL, Zhao WQ, Ferreira ST, Klein WL (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci U S A 106(6):1971–1976. https://doi.org/10.1073/pnas.0809158106

    Article  PubMed  PubMed Central  Google Scholar 

  31. Viola KL, Klein WL (2015) Amyloid beta oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129(2):183–206. https://doi.org/10.1007/s00401-015-1386-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192(1):106–113. https://doi.org/10.1016/j.bbr.2008.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mucke L, Selkoe DJ (2012) Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2(7):a006338. https://doi.org/10.1101/cshperspect.a006338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608. https://doi.org/10.15252/emmm.201606210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, Krafft GA, Klein WL (2003) Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci U S A 100(18):10417–10422. https://doi.org/10.1073/pnas.1834302100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, Krafft GA, Klein WL (2004) Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 24(45):10191–10200. https://doi.org/10.1523/jneurosci.3432-04.2004

    Article  CAS  PubMed  Google Scholar 

  37. Oddo S, Caccamo A, Tran L, Lambert MP, Glabe CG, Klein WL, LaFerla FM (2006) Temporal profile of amyloid-beta (Abeta) oligomerization in an in vivo model of Alzheimer disease. A link between Abeta and tau pathology. J Biol Chem 281(3):1599–1604. https://doi.org/10.1074/jbc.M507892200

    Article  CAS  PubMed  Google Scholar 

  38. Tomiyama T, Matsuyama S, Iso H, Umeda T, Takuma H, Ohnishi K, Ishibashi K, Teraoka R, Sakama N, Yamashita T, Nishitsuji K, Ito K, Shimada H, Lambert MP, Klein WL, Mori H (2010) A mouse model of amyloid beta oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J Neurosci 30(14):4845–4856. https://doi.org/10.1523/jneurosci.5825-09.2010

    Article  CAS  PubMed  Google Scholar 

  39. Ferretti MT, Bruno MA, Ducatenzeiler A, Klein WL, Cuello AC (2012) Intracellular Abeta-oligomers and early inflammation in a model of Alzheimer’s disease. Neurobiol Aging 33(7):1329–1342. https://doi.org/10.1016/j.neurobiolaging.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  40. Price KA, Varghese M, Sowa A, Yuk F, Brautigam H, Ehrlich ME, Dickstein DL (2014) Altered synaptic structure in the hippocampus in a mouse model of Alzheimer’s disease with soluble amyloid-beta oligomers and no plaque pathology. Mol Neurodegener 9:41. https://doi.org/10.1186/1750-1326-9-41

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xiao C, Davis FJ, Chauhan BC, Viola KL, Lacor PN, Velasco PT, Klein WL, Chauhan NB (2013) Brain transit and ameliorative effects of intranasally delivered anti-amyloid-beta oligomer antibody in 5XFAD mice. J Alzheimers Dis 35(4):777–788. https://doi.org/10.3233/jad-122419

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dorostkar MM, Burgold S, Filser S, Barghorn S, Schmidt B, Anumala UR, Hillen H, Klein C, Herms J (2014) Immunotherapy alleviates amyloid-associated synaptic pathology in an Alzheimer’s disease mouse model. Brain 137(Pt 12):3319–3326. https://doi.org/10.1093/brain/awu280

    Article  PubMed  PubMed Central  Google Scholar 

  43. Knight EM, Kim SH, Kottwitz JC, Hatami A, Albay R, Suzuki A, Lublin A, Alberini CM, Klein WL, Szabo P, Relkin NR, Ehrlich M, Glabe CG, Gandy S, Steele JW (2016) Effective anti-Alzheimer Abeta therapy involves depletion of specific Abeta oligomer subtypes. Neurol Neuroimmunol Neuroinflamm 3(3):e237. https://doi.org/10.1212/NXI.0000000000000237

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM, Paul SM (2002) Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci 5(5):452–457. https://doi.org/10.1038/nn842

    Article  CAS  Google Scholar 

  45. Nitsch RM, Hock C (2008) Targeting beta-amyloid pathology in Alzheimer's disease with Abeta immunotherapy. Neurotherapeutics 5(3):415–420. https://doi.org/10.1016/j.nurt.2008.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Klyubin I, Betts V, Welzel AT, Blennow K, Zetterberg H, Wallin A, Lemere CA, Cullen WK, Peng Y, Wisniewski T, Selkoe DJ, Anwyl R, Walsh DM, Rowan MJ (2008) Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization. J Neurosci 28(16):4231–4237. https://doi.org/10.1523/jneurosci.5161-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gimenez-Llort L, Rivera-Hernandez G, Marin-Argany M, Sanchez-Quesada JL, Villegas S (2013) Early intervention in the 3xTg-AD mice with an amyloid beta-antibody fragment ameliorates first hallmarks of Alzheimer disease. MAbs 5(5):665–677. https://doi.org/10.4161/mabs.25424

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tucker S, Moller C, Tegerstedt K, Lord A, Laudon H, Sjodahl J, Soderberg L, Spens E, Sahlin C, Waara ER, Satlin A, Gellerfors P, Osswald G, Lannfelt L (2015) The murine version of BAN2401 (mAb158) selectively reduces amyloid-beta protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimers Dis 43(2):575–588. https://doi.org/10.3233/jad-140741

    Article  CAS  Google Scholar 

  49. Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, O'Gorman J, Qian F, Arastu M, Li M, Chollate S, Brennan MS, Quintero-Monzon O, Scannevin RH, Arnold HM, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, Grimm J, Hock C, Nitsch RM, Sandrock A (2016) The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature 537(7618):50–56. https://doi.org/10.1038/nature19323

    Article  CAS  PubMed  Google Scholar 

  50. Paula-Lima AC, Brito-Moreira J, Ferreira ST (2013) Deregulation of excitatory neurotransmission underlying synapse failure in Alzheimer's disease. J Neurochem 126(2):191–202. https://doi.org/10.1111/jnc.12304

    Article  CAS  PubMed  Google Scholar 

  51. Serra-Batiste M, Ninot-Pedrosa M, Bayoumi M, Gairi M, Maglia G, Carulla N (2016) Abeta42 assembles into specific beta-barrel pore-forming oligomers in membrane-mimicking environments. Proc Natl Acad Sci U S A 113(39):10866–10871. https://doi.org/10.1073/pnas.1605104113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bode DC, Baker MD, Viles JH (2017) Ion channel formation by amyloid-beta42 oligomers but not amyloid-beta40 in cellular membranes. J Biol Chem 292(4):1404–1413. https://doi.org/10.1074/jbc.M116.762526

    Article  CAS  PubMed  Google Scholar 

  53. Di Scala C, Troadec JD, Lelievre C, Garmy N, Fantini J, Chahinian H (2014) Mechanism of cholesterol-assisted oligomeric channel formation by a short Alzheimer beta-amyloid peptide. J Neurochem 128(1):186–195. https://doi.org/10.1111/jnc.12390

    Article  CAS  PubMed  Google Scholar 

  54. Di Scala C, Yahi N, Boutemeur S, Flores A, Rodriguez L, Chahinian H, Fantini J (2016) Common molecular mechanism of amyloid pore formation by Alzheimer’s beta-amyloid peptide and alpha-synuclein. Sci Rep 6:28781. https://doi.org/10.1038/srep28781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee M, Guo JP, Schwab C, McGeer EG, McGeer PL (2012) Selective inhibition of the membrane attack complex of complement by low molecular weight components of the aurin tricarboxylic acid synthetic complex. Neurobiol Aging 33(10):2237–2246. https://doi.org/10.1016/j.neurobiolaging.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  56. Lambert MP, Velasco PT, Chang L, Viola KL, Fernandez S, Lacor PN, Khuon D, Gong Y, Bigio EH, Shaw P, De Felice FG, Krafft GA, Klein WL (2007) Monoclonal antibodies that target pathological assemblies of Abeta. J Neurochem 100(1):23–35. https://doi.org/10.1111/j.1471-4159.2006.04157.x

    Article  CAS  PubMed  Google Scholar 

  57. Bayburt TH, Sligar SG (2003) Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci 12(11):2476–2481. https://doi.org/10.1110/ps.03267503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gregory MC, McLean MA, Sligar SG (2017) Interaction of KRas4b with anionic membranes: a special role for PIP2. Biochem Biophys Res Commun 487(2):351–355. https://doi.org/10.1016/j.bbrc.2017.04.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William L. Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lo Bu, R., Clark, J., DiChiara, T., Sligar, S.G., Klein, W.L. (2018). SMPL Synaptic Membranes: Nanodisc-Mediated Synaptic Membrane Mimetics Expand the Toolkit for Drug Discovery and the Molecular Cell Biology of Synapses. In: Murphy, K. (eds) Synaptosomes. Neuromethods, vol 141. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8739-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8739-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8738-2

  • Online ISBN: 978-1-4939-8739-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics