Skip to main content
Book cover

Synaptosomes pp 209–225Cite as

Porosomes: Supramolecular Structures at the Synaptosome Membrane Involved in Vesicle Docking, Fusion, and Neurotransmitter Release

  • Protocol
  • First Online:
  • 967 Accesses

Part of the book series: Neuromethods ((NM,volume 141))

Abstract

Cup-shaped supramolecular structures at the cell plasma membrane called porosomes mediate the fractional discharge of vesicular contents from cells during secretion. Membrane-bound secretory vesicles transiently dock and fuse at the porosome base via SNARE proteins, to expel vesicular contents to the outside during cell secretion. Porosomes range in size from 15 nm in neurons and astrocytes to 180 nm in endocrine and exocrine cells. Neuronal porosomes are composed of nearly 40 proteins, compared to the 120 nm nuclear pore composed of nearly 1000 protein molecules. Determination of the presence of porosomes in all cells examined and an understanding of their structure, composition, and functional reconstitution into artificial lipid membrane and in live cells provide a molecular understanding of cell secretion. In this chapter, the discovery and structural characterization of the neuronal porosome at the synaptosome membrane using atomic force microscopy, electron microscopy, and small-angle X-ray solution scattering; its isolation and both structural and functional reconstitution into artificial lipid membrane; and the possible molecular mechanism of its involvement in neurotransmitter release are presented. The assembly of neuronal t/v-SNARE complexes in a rosette or ring when t-SNAREs (present at the porosome base) in one membrane interact with v-SNAREs (secretory vesicle) in an opposing membrane and the molecular mechanism of synaptic vesicle swelling required for the regulated fractional release of vesicle contents are also presented in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ceccarelli B, Hurlbut WP, Mauro A (1973) Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol 57:499–524

    Article  CAS  Google Scholar 

  2. Almers W, Tse FW (1990) Transmitter release from synapses: does a preassembled fusion pore initiate exocytosis? Neuron 4:813–818

    Article  CAS  Google Scholar 

  3. Monck JR, Fernandez JM (1992) The exocytotic fusion pore. J Cell Biol 119:1395–1404

    Article  CAS  Google Scholar 

  4. Schneider SW, Sritharan KC, Geibel JP, Oberleithner H, Jena BP (1997) Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma membrane structures involved in exocytosis. Proc Natl Acad Sci U S A 94:316–321

    Article  CAS  Google Scholar 

  5. Alexander S, Hellemans L, Marti O, Schneir J, Elings V, Hansma PK (1989) An atomic resolution atomic force microscope implemented using an optical lever. J Appl Phys 65:164–167

    Article  CAS  Google Scholar 

  6. Jena BP, Cho S-J, Jeremic A, Stromer MH, Abu-Hamdah R (2003) Structure and composition of the fusion pore. Biophys J 84:1337–1343

    Article  CAS  Google Scholar 

  7. Jeremic A, Kelly M, Cho S-J, Stromer MH, Jena BP (2003) Reconstituted fusion pore. Biophys J 85:2035–2043

    Article  CAS  Google Scholar 

  8. Craciun C, Barbu-Tudoran L (2013) Identification of new structural elements within ‘porosomes’ of the exocrine pancreas: a detailed study using high-resolution electron microscopy. Micron 44:137–142

    Article  CAS  Google Scholar 

  9. Paknikar KM, Jeremic A (2007) (2007) Discovery of the cell secretion machinery. J Biomed Nanotechnol 3:218–222

    Article  CAS  Google Scholar 

  10. Cho W-J, Jeremic A, Rognlien KT, Zhvania MG, Lazrishvili I, Tamar B, Jena BP (2004) Structure, isolation, composition and reconstitution of the neuronal fusion pore. Cell Biol Int 28:699–708

    Article  CAS  Google Scholar 

  11. Cho WJ, Ren G, Jena BP (2008) EM 3D contour maps provide protein assembly at the nanoscale within the neuronal porosome complex. J Microsc 232:106–111

    Article  CAS  Google Scholar 

  12. Kovari LC, Brunzelle JS, Lewis KT, Cho WJ, Lee J-S, Taatjes DJ, Jena BP (2014) X-ray solution structure of the native neuronal porosome-synaptic vesicle complex: implication in neurotransmitter release. Micron 56:37–43

    Article  CAS  Google Scholar 

  13. Lewis KT, Maddipati KR, Taatjes DJ, Jena BP (2014) Neuronal Porosome Lipidome. J Cell Mol Med 18:1927–1937

    Article  CAS  Google Scholar 

  14. Lee J-S, Jeremic A, Shin L, Cho WJ, Chen X, Jena BP (2012) Neuronal porosome proteome: molecular dynamics and architecture. J Proteome 75:3952–3962

    Article  CAS  Google Scholar 

  15. Cho WJ, Jeremic A, Jin H, Ren G, Jena BP (2007) Neuronal fusion pore assembly requires membrane cholesterol. Cell Biol Int 31:1301–1308

    Article  CAS  Google Scholar 

  16. Okuneva VG, Japaridze ND, Kotaria NT, Zhvania MG (2012) Neuronal porosome in the rat and cat brain. Cell Tissue Biol 6:69–72

    Article  Google Scholar 

  17. Lin DH, Hoelz A (2016) Nuclear pores come into sharper focus. The Scientist 1:2016

    Google Scholar 

  18. Lin DH et al (2016) Architecture of the symmetric core of the nuclear pore. Science 352:aaf1015

    Article  Google Scholar 

  19. Hoelz A et al (2011) The structure of the nuclear pore complex. Annu Rev Biochem 80:613–643

    Article  CAS  Google Scholar 

  20. Nemhauser I, Goldberg DJ (1985) Structural effects in axoplasm of DNase I, an actin depolymerizer that blocks fast axonal transport. Brain Res 334:47–58

    Article  CAS  Google Scholar 

  21. Cole JC, Villa BR, Wilkinson RS (2000) Disruption of actin impedes transmitter release in snake motor terminals. J Physiol 525(3):579–586

    Article  CAS  Google Scholar 

  22. Klein ME, Younts TJ, Castillo PE, Jordan BA (2013) RNA-binding protein Sam68 controls synapse number and local beta-actin mRNA metabolism in dendrites. Proc Natl Acad Sci U S A 110:3125–3130

    Article  CAS  Google Scholar 

  23. Khanna R, Zougman A, Stanley EF (2007) A proteomic screen for presynaptic terminal N-type calcium channel (CaV2.2) binding partners. J Biochem Mol Biol 40:302–314

    CAS  PubMed  Google Scholar 

  24. Khanna R, Li Q, Bewersdorf J, Stanley EF (2007) The presynaptic CaV2.2 channel-transmitter release site core complex. Eur J Neurosci 26:547–559

    Article  Google Scholar 

  25. Balestrino M, Young J, Aitken P (1999) Block of (Na+, K+)ATPase with ouabain induces spreading depression-like depolarization in hippocampal slices. Brain Res 838:37–44

    Article  CAS  Google Scholar 

  26. Li KC, Zhang FX, Li CL, Wang F, Yu MY, Zhong YQ, Zhang KH, Lu YJ, Wang Q, Ma XL, Yao JR, Wang JY, Lin LB, Han M, Zhang YQ, Kuner R, Xiao HS, Bao L, Gao X, Zhang X (2011) Follistatin-like 1 suppresses sensory afferent transmission by activating Na+, K+-ATPase. Neuron 69:974–987

    Article  CAS  Google Scholar 

  27. Scuri R, Lombardo P, Cataldo E, Ristori C, Brunelli M (2007) Inhibition of Na+/K+ ATPase potentiates synaptic transmission in tactile sensory neurons of the leech. Eur J Neurosci 25:59–167

    Article  Google Scholar 

  28. Kim JH, Sizov I, Dobretsov M, von Gersdorff H (2007) Presynaptic Ca2+ buffers control the strength of a fast post-tetanic hyperpolarization mediated by the alpha3 Na(+)/K(+)-ATPase. Nat Neurosci 10:196–205

    Article  CAS  Google Scholar 

  29. Jensen TP, Filoteo AG, Knopfel T, Empson RM (2007) Presynaptic plasma membrane Ca2+ ATPase isoform 2a regulates excitatory synaptic transmission in rat hippocampal CA3. J Physiol 579:85–99

    Article  CAS  Google Scholar 

  30. Garside ML, Turner PR, Austen B, Strehler EE, Beesley PW, Empson RM (2009) Molecular interactions of the plasma membrane calcium ATPase 2 at pre- and post-synaptic sites in rat cerebellum. Neuroscience 162:383–395

    Article  CAS  Google Scholar 

  31. Geerlings A, Nunez E, Lopez-Corcuera B, Aragon C (2001) Calcium- and syntaxin 1-mediated trafficking of the neuronal glycine transporter GLYT2. J Biol Chem 276:17584–17590

    Article  CAS  Google Scholar 

  32. de Juan-Sanz J, Núñez E, Villarejo-López L, Pérez-Hernández D, Rodriguez-Fraticelli AE, López-Corcuera B, Vázquez J, Aragón C (2013) Na+/K+-ATPase is a new interacting partner for the neuronal glycine transporter GlyT2 that downregulates its expression in vitro and in vivo. J Neurosci 33:14269–14281

    Article  Google Scholar 

  33. Empson RM, Akemann W, Knopfel T (2010) The role of the calcium transporter protein plasma membrane calcium ATPase PMCA2 in cerebellar Purkinje neuron function. Funct Neuronal 25:53–158

    Google Scholar 

  34. Dodson HC, Charalabapoulou M (2001) PMCA2 mutation causes structural changes in the auditory system in deafwaddler mice. J Neurocytol 30:281–292

    Article  CAS  Google Scholar 

  35. Iino S, Kobayashi S, Maekawa S (1999) Immunohistochemical localization of a novel acidic calmodulin-binding protein, NAP-22, in the rat brain. Neuroscience 91:1435–4436

    Article  CAS  Google Scholar 

  36. Iino S, Maekawa S (1999) Immunohistochemical demonstration of a neuronal calmodulin-binding protein, NAP-22, in the rat spinal cord. Brain Res 834:66–73

    Article  CAS  Google Scholar 

  37. Yamamoto Y, Sokawa Y, Maekawa S (1997) Biochemical evidence for the presence of NAP-22, a novel acidic calmodulin binding protein, in the synaptic vesicles of rat brain. Neurosci Lett 224:127–130

    Article  CAS  Google Scholar 

  38. Freeman NL, Field J (2000) Mammalian homolog of the yeast cyclase associated protein, CAP/Srv2p, regulates actin filament assembly. Cell Motil Cytoskeleton 45:106–120

    Article  CAS  Google Scholar 

  39. Zhang H, Ghai P, Wu H, Wang C, Field J, Zhou G-L (2013) Mammalian adenylyl cyclase-associated protein 1 (CAP1) regulates cofilin function, the actin cytoskeleton, and cell adhesion. J Biol Chem 288:20966–20977

    Article  CAS  Google Scholar 

  40. Sultana R, Boyd-Kimball D, Cai J, Pierce WM, Klein JB, Merchant M, Butterfield DA (2007) Proteomics analysis of the Alzheimer's disease hippocampal proteome. J Alzheimers Dis 11:153–164

    Article  CAS  Google Scholar 

  41. Vlkolinsky R, Cairns N, Fountoulakis M, Lubec G (2001) Decreased brain levels of 2′,3′-cyclic nucleotide-3′-phosphodiesterase in down syndrome and Alzheimer’s disease. Neurobiol Aging 22:547–553

    Article  CAS  Google Scholar 

  42. Reinikainen KJ, Pitkanen A, Riekkinen PJ (1989) 2′,3′-cyclic nucleotide-3′-phosphodiesterase activity as an index of myelin in the post-mortem brains of patients with Alzheimer’s disease. Neurosci Lett 106:229–232

    Article  CAS  Google Scholar 

  43. Flynn SW, Lang DJ, Mackay AL, Goghari V, Vavasour IM, Whittall KP, Smith GN, Arango V, Mann JJ, Dwork AJ, Falkai P, Honer WG (2003) Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol Psychiatry 8:811–820

    Article  CAS  Google Scholar 

  44. Peirce TR, Bray NJ, Williams NM, Norton N, Moskvina V, Preece A, Haroutunian V, Buxbaum JD, Owen MJ, O'Donovan MC (2006) Convergent evidence for 2′,3′-cyclic nucleotide 3′-phosphodiesterase as a possible susceptibility gene for schizophrenia. Arch Gen Psychiatry 63:18–24

    Article  CAS  Google Scholar 

  45. Mikoshiba K, Aoki E, Tsukada Y (1980) 2′-3′-cyclic nucleotide 3′-phosphohydrolase activity in the central nervous system of a myelin deficient mutant (Shiverer). Brain Res 192:195–204

    Article  CAS  Google Scholar 

  46. Zhao YY, Shi XY, Qiu X, Zhang L, Lu W, Yang S, Li C, Cheng GH, Yang ZW, Tang Y (2011) Enriched environment increases the total number of CNPase positive cells in the corpus callosum of middle-aged rats. Acta Neurobiol Exp (Wars) 71:322–330

    Google Scholar 

  47. Sinclair LI, Tayler HM, Love S (2015) Synaptic protein levels altered in vascular dementia. Neuropathol Appl Neurobiol 41:533–543

    Article  CAS  Google Scholar 

  48. Mukaetova-Ladinska EB, Xuereb JH, Garcia-Sierra F, Hurt J, Gertz HJ, Hills R, Brayne C, Huppert FA, Paykel ES, McGee MA, Jakes R, Honer WG, Harrington CR, Wischik CM (2009) Lewy body variant of Alzheimer’s disease: selective neocortical loss of t-SNARE proteins and loss of MAP2 and alpha-synuclein in medial temporal lobe. Sci World J 9:1463–1475

    Article  CAS  Google Scholar 

  49. Greber S, Lubec G, Cairns N, Fountoulakis M (1999) Decreased levels of synaptosomal associated protein 25 in the brain of patients with down syndrome and Alzheimer’s disease. Electrophoresis 20:928–934

    Article  CAS  Google Scholar 

  50. Corradini I, Donzelli A, Antonucci F, Welzl H, Loos M, Martucci R, De Astis S, Pattini L, Inverardi F, Wolfer D, Caleo M, Bozzi Y, Verderio C, Frassoni C, Braida D, Clerici M, Lipp HP, Sala M, Matteoli M (2014) Epileptiform activity and cognitive deficits in SNAP-25 (+/−) mice are normalized by antiepileptic drugs. Cereb Cortex 24:364–376

    Article  Google Scholar 

  51. McKee AG, Loscher JS, O'Sullivan NC, Chadderton N, Palfi A, Batti L, Sheridan GK, O'Shea S, Moran M, McCabe O, Fernandez AB, Pangalos MN, O'Connor JJ, Regan CM, O'Connor WT, Humphries P, Farrar GJ, Murphy KJ (2010) AAV-mediated chronic over-expression of SNAP-25 in adult rat dorsal hippocampus impairs memory-associated synaptic plasticity. J Neurochem 112:991–1004

    Article  CAS  Google Scholar 

  52. Smith R, Klein P, Koc-Schmitz Y, Waldvogel HJ, Faull RL, Brundin P, Plomann M, Li JY (2007) Loss of SNAP-25 and rabphilin 3a in sensory-motor cortex in Huntington’s disease. J Neurochem 103:115–123

    CAS  PubMed  Google Scholar 

  53. Jeans AF, Oliver PL, Johnson R, Capogna M, Vikman J, Molnar Z, Babbs A, Partridge CJ, Salehi A, Bengtsson M, Eliasson L, Rorsman P, Davies KE (2007) A dominant mutation in Snap25 causes impaired vesicle trafficking, sensorimotor gating, and ataxia in the blind-drunk mouse. Proc Natl Acad Sci U S A 104:2431–2436

    Article  CAS  Google Scholar 

  54. Scarr E, Gray L, Keriakous D, Robinson PJ, Dean B (2006) Increased levels of SNAP-25 and synaptophysin in the dorsolateral prefrontal cortex in bipolar I disorder. Bipolar Disord 8:133–143

    Article  CAS  Google Scholar 

  55. Cao F, Hata R, Zhu P, Niinobe M, Sakanaka M (2009) Up-regulation of syntaxin1 in ischemic cortex after permanent focal ischemia in rats. Brain Res 1272:52–61

    Article  CAS  Google Scholar 

  56. Wu MN, Fergestad T, Lloyd TE, He Y, Broadie K, Bellen HJ (1999) Syntaxin 1A interacts with multiple exocytic proteins to regulate neurotransmitter release in vivo. Neuron 23:593–605

    Article  CAS  Google Scholar 

  57. Lagow RD, Bao H, Cohen EN, Daniels RW, Zuzek A, Williams WH, Macleod GT, Sutton RB, Zhang B (2007) Modification of a hydrophobic layer by a point mutation in syntaxin 1A regulates the rate of synaptic vesicle fusion. PLoS Biol 5:e72

    Article  Google Scholar 

  58. Chapman ER, An S, Edwardson JM, Jahn R (1996) A novel function for the second C2 domain of synaptotagmin. Ca2+−triggered dimerization. J Biol Chem 271:5844–5849

    Article  CAS  Google Scholar 

  59. Zhang X, Kim-Miller MJ, Fukuda M, Kowalchyk JA, Martin TF (2002) Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis. Neuron 34:599–611

    Article  CAS  Google Scholar 

  60. Japaridze NJ, Okuneva VG, Qsovreli MG, Surmava AG, Lordkipanidze TG, Kiladze M, Zhvania MG (2012) Hypokineitic stress and neuronal porosome complex in the rat brain: the electron microscopic study. Micron 43:948–963

    Article  CAS  Google Scholar 

  61. Okuneva VG, Japaridze NJ, Kotaria NT, Zhvania MG (2012) Neuronal porosome in the rat and cat brain. Tsitoloiya 54:210–215

    Google Scholar 

  62. Zhvania MG, Japaridze NJ, Qsovreli MG, Okuneva VG, Surmava AG, Lordkipanidze TG (2014) The neuronal porosome complex in mammalian brain: a study using electron microscope. In: Jena BP, Taajes DJ (eds) NanoCellBiology, Multimodal imaging in biology and medicine. Pan Stanford Publishing Pte. Ltd., Verlag

    Google Scholar 

  63. Zhvania MG, Japaridze NJ, Ksovreli M (2014) Effect of different forms of hypokinesia on the ultrastructure of limbic, extrapyramidal and neocortical areas of the rat brain: electron microscopic study. Proceedings of Physics, Springer International Publishing Switzerland 15:21–16

    Google Scholar 

  64. Zhvania MG, Bikashvili TZ, Japaridze NJ, Lazrishvili II, Ksovreli M (2014) White noise and neuronal porosome complex: transmission electron microscopic study. Discoveries 2(3):e25

    Article  Google Scholar 

  65. Eggermont JJ (2008) The role of sound in adult and developmental auditory cortical plasticity. Ear Hear 29(6):819–829

    Article  Google Scholar 

  66. Zhu X, Wang F, Hu H, Sun X, Kilgard MP, Merzenich MM et al (2014) Environmental acoustic enrichment promotes recovery from developmentally degraded auditory cortical processing. J Neurosci 34:5406–5415

    Article  Google Scholar 

  67. Trimble WS, Cowan DW, Scheller RH (1988) VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc Natl Acad Sci U S A 85:4538–4542

    Article  CAS  Google Scholar 

  68. Oyler GA, Higgins GA, Hart RA, Battenberg E, Billingsley M, Bloom FE, Wilson MC (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 109:3039–3052

    Article  CAS  Google Scholar 

  69. Bennett MK, Calakos N, Schller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257:255–259

    Article  CAS  Google Scholar 

  70. Weber T, Zemelman BV, McNew JA, Westerman B, Gmachi M, Parlati F, Söllner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  CAS  Google Scholar 

  71. Cho S-J, Kelly M, Rognlien KT, Cho J, Hörber JK, Jena BP (2002) SNAREs in opposing bilayers interact in a circular array to form conducting pores. Biophys J 83:2522–2527

    Article  CAS  Google Scholar 

  72. Cho WJ, Jeremic A, Jena BP (2005) Size of supramolecular SNARE complex: membrane-directed self-assembly. J Am Chem Soc 127:10156–10157

    Article  CAS  Google Scholar 

  73. Cho WJ, Jeremic A, Jena BP (2005) Direct interaction between SNAP-23 and L-type Ca2+ channel. J Cell Mol Med 9(2):380–386

    Article  CAS  Google Scholar 

  74. Jena BP, Cho S-J, Jeremic A, Stromer MH, Abu-Hamdah R (2003) Structure and composition of the fusion pore. Biophys J 84:1–7

    Article  Google Scholar 

  75. Kelly M, Cho WJ, Jeremic A, Abu-Hamdah R, Jena BP (2004) Vesicle swelling regulates content expulsion during secretion. Cell Biol Int 28:709–716

    Article  CAS  Google Scholar 

  76. Jena BP, Schneider SW, Geibel JP, Webster P, Oberleithner H, Sritharan KC (1997) Gi regulation of secretory vesicle swelling examined by atomic force microscopy. Proc Natl Acad Sci U S A 94:13317–13322

    Article  CAS  Google Scholar 

  77. Cho S–J, Sattar AK, Jeong EH, Satchi M, Cho J, Dash S, Mayes MS, Stromer MH, Jena BP (2002) Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proc Natl Acad Sci U S A 99:4720–4724

    Article  CAS  Google Scholar 

  78. Jeremic A, Cho W-J, Jena BP (2005) Involvement of water channels in synaptic vesicle swelling. Exp Biol Med 230:674–680

    Article  CAS  Google Scholar 

  79. Abu-Hamdah R, Cho W-J, Cho S-J, Jeremic A, Kelly M, Ilie AE, Jena BP (2004) Regulation of the water channel aquaporin-1: isolation and reconstitution of the regulatory complex. Cell Biol Int 28:7–17

    Article  CAS  Google Scholar 

  80. Shin L, Basi N, Lee J-S, Cho W-J, Chen Z, Abu-Hamdah R, Oupicky D, Jena BP (2010) Involvement of vH+-ATPase in synaptic vesicle swelling. J Neurosci Res 88:95–101

    Article  CAS  Google Scholar 

  81. Lee J-S, Cho W-J, Shin L, Jena BP (2010) Involvement of cholesterol in synaptic vesicle swelling. Exp Biol Med 235:470–477

    Article  CAS  Google Scholar 

  82. Chen Z-H, Lee J-S, Shin L, Cho W-J, Jena BP (2010) Involvement of β-adrenergic receptor in synaptic vesicle swelling and implication in neurotransmitter release. J Cell Mol Med 15:572–576

    Article  Google Scholar 

  83. Lewis KT, Maddipati KR, Naik AR, Jena BP (2017) Unique lipid chemistry of synaptic vesicle and synaptosome membrane revealed using mass spectrometry. ACS Chem Neurosci 8:1163. https://doi.org/10.1021/acschemneuro.7b00030

    Article  CAS  PubMed  Google Scholar 

  84. Aravanis AM, Pyle JL, Tsien RW (2003) Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423:643–647

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work presented in this chapter was supported in part by the National Institutes of Health grants DK56212 and NS39918 and the National Science Foundation grants EB00303 and CBET1066661 (BPJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhanu P. Jena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jena, B.P. (2018). Porosomes: Supramolecular Structures at the Synaptosome Membrane Involved in Vesicle Docking, Fusion, and Neurotransmitter Release. In: Murphy, K. (eds) Synaptosomes. Neuromethods, vol 141. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8739-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8739-9_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8738-2

  • Online ISBN: 978-1-4939-8739-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics