Skip to main content

Predicting Functions of Disordered Proteins with MoRFpred

  • Protocol
  • First Online:
Computational Methods in Protein Evolution

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1851))

Abstract

Intrinsically disordered proteins and regions are involved in a wide range of cellular functions, and they often facilitate protein-protein interactions. Molecular recognition features (MoRFs) are segments of intrinsically disordered regions that bind to partner proteins, where binding is concomitant with a transition to a structured conformation. MoRFs facilitate translation, transport, signaling, and regulatory processes and are found across all domains of life. A popular computational tool, MoRFpred, accurately predicts MoRFs in protein sequences. MoRFpred is implemented as a user-friendly web server that is freely available at http://biomine.cs.vcu.edu/servers/MoRFpred/. We describe this predictor, explain how to run the web server, and show how to interpret the results it generates. We also demonstrate the utility of this web server based on two case studies, focusing on the relevance of evolutionary conservation of MoRF regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang C, Uversky VN, Kurgan L (2016) Disordered nucleiome: abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea. Proteomics 16(10):1486–1498

    CAS  PubMed  Google Scholar 

  2. Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L (2015) Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 72(1):137–151

    CAS  PubMed  Google Scholar 

  3. Habchi J, Tompa P, Longhi S, Uversky VN (2014) Introducing protein intrinsic disorder. Chem Rev 114(13):6561–6588

    CAS  PubMed  Google Scholar 

  4. Dunker AK, Babu MM, Barbar E, Blackledge M, Bondos SE, Dosztányi Z, Dyson HJ, Forman-Kay J, Fuxreiter M, Gsponer J, Han K-H, Jones DT, Longhi S, Metallo SJ, Nishikawa K, Nussinov R, Obradovic Z, Pappu RV, Rost B, Selenko P, Subramaniam V, Sussman JL, Tompa P, Uversky VN (2013) What’s in a name? Why these proteins are intrinsically disordered. Intrinsically Disord Proteins 1(1):e24157

    PubMed  PubMed Central  Google Scholar 

  5. Brown CJ, Takayama S, Campen AM, Vise P, Marshall TW, Oldfield CJ (2002) Evolutionary rate heterogeneity in proteins with long disordered regions. J Mol Evol 55:104

    CAS  PubMed  Google Scholar 

  6. Meszaros B, Tompa P, Simon I, Dosztanyi Z (2007) Molecular principles of the interactions of disordered proteins. J Mol Biol 372(2):549–561

    CAS  PubMed  Google Scholar 

  7. Trudeau T, Nassar R, Cumberworth A, Wong ET, Woollard G, Gsponer J (2013) Structure and intrinsic disorder in protein autoinhibition. Structure 21(3):332–341

    CAS  PubMed  Google Scholar 

  8. Varadi M, Guharoy M, Zsolyomi F, Tompa P (2015) DisCons: a novel tool to quantify and classify evolutionary conservation of intrinsic protein disorder. BMC Bioinformatics 16(1):153

    PubMed  PubMed Central  Google Scholar 

  9. Ait-Bara S, Carpousis AJ, Quentin Y (2015) RNase E in the gamma-Proteobacteria: conservation of intrinsically disordered noncatalytic region and molecular evolution of microdomains. Mol Genet Genomics 290(3):847–862

    CAS  PubMed  Google Scholar 

  10. Davey NE, Cyert MS, Moses AM (2015) Short linear motifs – ex nihilo evolution of protein regulation. Cell Commun Signal 13(1):43

    PubMed  PubMed Central  Google Scholar 

  11. Mohan A, Oldfield CJ, Radivojac P, Vacic V, Cortese MS, Dunker AK, Uversky VN (2006) Analysis of molecular recognition features (MoRFs). J Mol Biol 362(5):1043–1059

    CAS  PubMed  Google Scholar 

  12. Vacic V, Oldfield CJ, Mohan A, Radivojac P, Cortese MS, Uversky VN, Dunker AK (2007) Characterization of molecular recognition features, MoRFs, and their binding partners. J Proteome Res 6(6):2351–2366

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Oldfield CJ, Cheng Y, Cortese MS, Romero P, Uversky VN, Dunker AK (2005) Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44(37):12454–12470

    CAS  PubMed  Google Scholar 

  14. Yan J, Dunker AK, Uversky VN, Kurgan L (2016) Molecular recognition features (MoRFs) in three domains of life. Mol BioSyst 12(3):697–710

    CAS  PubMed  Google Scholar 

  15. Cheng Y, Oldfield CJ, Meng J, Romero P, Uversky VN, Dunker AK (2007) Mining α-helix-forming molecular recognition features with cross species sequence alignments. Biochemistry 46(47):13468–13477

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Malhis N, Gsponer J (2015) Computational identification of MoRFs in protein sequences. Bioinformatics 31(11):1738–1744

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Disfani FM, Hsu WL, Mizianty MJ, Oldfield CJ, Xue B, Dunker AK, Uversky VN, Kurgan L (2012) MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Bioinformatics 28(12):i75–i83

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Malhis N, Jacobson M, Gsponer J (2016) MoRFchibi SYSTEM: software tools for the identification of MoRFs in protein sequences. Nucleic Acids Res 44:W488

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones DT, Cozzetto D (2015) DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31(6):857–863

    CAS  PubMed  Google Scholar 

  20. Fang C, Noguchi T, Tominaga D, Yamana H (2013) MFSPSSMpred: identifying short disorder-to-order binding regions in disordered proteins based on contextual local evolutionary conservation. BMC Bioinformatics 14:300

    PubMed  PubMed Central  Google Scholar 

  21. Xue B, Dunker AK, Uversky VN (2010) Retro-MoRFs: identifying protein binding sites by normal and reverse alignment and intrinsic disorder prediction. Int J Mol Sci 11(10):3725–3747

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Puntervoll P, Linding R, Gemünd C, Chabanis-Davidson S, Mattingsdal M, Cameron S, Martin DMA, Ausiello G, Brannetti B, Costantini A, Ferrè F, Maselli V, Via A, Cesareni G, Diella F, Superti-Furga G, Wyrwicz L, Ramu C, McGuigan C, Gudavalli R, Letunic I, Bork P, Rychlewski L, Küster B, Helmer-Citterich M, Hunter WN, Aasland R, Gibson TJ (2003) ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31(13):3625–3630

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Meszaros B, Dosztanyi Z, Simon I (2012) Disordered binding regions and linear motifs--bridging the gap between two models of molecular recognition. PLoS One 7(10):e46829

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Peng Z, Wang C, Uversky VN, Kurgan L (2017) Prediction of disordered RNA, DNA, and protein binding regions using DisoRDPbind. Methods Mol Biol 1484:187–203

    CAS  PubMed  Google Scholar 

  25. Meszaros B, Simon I, Dosztanyi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5(5):e1000376

    PubMed  PubMed Central  Google Scholar 

  26. Dosztanyi Z, Meszaros B, Simon I (2009) ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 25(20):2745–2746

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Khan W, Duffy F, Pollastri G, Shields DC, Mooney C (2013) Predicting binding within disordered protein regions to structurally characterised peptide-binding domains. PLoS One 8(9):e72838

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434

    CAS  PubMed  Google Scholar 

  30. Ward JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT (2004) The DISOPRED server for the prediction of protein disorder. Bioinformatics 20(13):2138–2139

    CAS  PubMed  Google Scholar 

  31. McGuffin LJ (2008) Intrinsic disorder prediction from the analysis of multiple protein fold recognition models. Bioinformatics 24(16):1798–1804

    CAS  PubMed  Google Scholar 

  32. Mizianty MJ, Stach W, Chen K, Kedarisetti KD, Disfani FM, Kurgan L (2010) Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources. Bioinformatics 26(18):i489–i496

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Faraggi E, Xue B, Zhou Y (2009) Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network. Proteins 74(4):847–856

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Schlessinger A, Yachdav G, Rost B (2006) PROFbval: predict flexible and rigid residues in proteins. Bioinformatics 22(7):891–893

    CAS  PubMed  Google Scholar 

  35. Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M (2008) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 36(Database issue):D202–D205

    CAS  PubMed  Google Scholar 

  36. Tate RF (1954) Correlation between a discrete and a continuous variable. Point-Biserial correlation. Ann Math Statist 25(3):603–607

    Google Scholar 

  37. Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH, Tom E, Mack DH, Levine AJ (2000) Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev 14(8):981–993

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Balint EE, Vousden KH (2001) Activation and activities of the p53 tumour suppressor protein. Br J Cancer 85(12):1813–1823

    CAS  PubMed Central  Google Scholar 

  39. el-Deiry WS (1998) Regulation of p53 downstream genes. Semin Cancer Biol 8(5):345–357

    CAS  PubMed  Google Scholar 

  40. Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW, Vogelstein B (1999) Identification and classification of p53-regulated genes. Proc Natl Acad Sci U S A 96(25):14517–14522

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sax JK, El-Deiry WS (2003) p53-induced gene expression analysis. Methods Mol Biol 234:65–71

    CAS  PubMed  Google Scholar 

  42. Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22(56):9030–9040

    CAS  PubMed  Google Scholar 

  43. Anderson CW, Appella E (2004) Signaling to the p53 tumor suppressor through pathways activated by genotoxic and nongenotoxic stress. In: Bradshaw RA, Dennis EA (eds) Handbook of cell signaling. Academic Press, New York, pp 237–247

    Google Scholar 

  44. Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M (2002) Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21(8):1299–1303

    CAS  PubMed  Google Scholar 

  45. Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14(5):381–395

    CAS  PubMed  Google Scholar 

  46. Abraham AG, O'Neill E (2014) PI3K/Akt-mediated regulation of p53 in cancer. Biochem Soc Trans 42(4):798–803

    CAS  PubMed  Google Scholar 

  47. Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15(1):2–8

    CAS  PubMed  Google Scholar 

  48. Soussi T, Beroud C (2001) Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 1(3):233–240

    CAS  PubMed  Google Scholar 

  49. Bookstein R (1994) Tumor suppressor genes in prostatic oncogenesis. J Cell Biochem Suppl 19:217–223

    CAS  PubMed  Google Scholar 

  50. Pencik J, Wiebringhaus R, Susani M, Culig Z, Kenner L (2015) IL-6/STAT3/ARF: the guardians of senescence, cancer progression and metastasis in prostate cancer. Swiss Med Wkly 145:w14215

    PubMed  Google Scholar 

  51. Wolff JM, Stephenson RN, Jakse G, Habib FK (1994) Retinoblastoma and p53 genes as prognostic indicators in urological oncology. Urol Int 53(1):1–5

    CAS  PubMed  Google Scholar 

  52. Joerger AC, Ang HC, Veprintsev DB, Blair CM, Fersht AR (2005) Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations. J Biol Chem 280(16):16030–16037

    CAS  PubMed  Google Scholar 

  53. Canadillas JM, Tidow H, Freund SM, Rutherford TJ, Ang HC, Fersht AR (2006) Solution structure of p53 core domain: structural basis for its instability. Proc Natl Acad Sci U S A 103(7):2109–2114

    PubMed  PubMed Central  Google Scholar 

  54. Wang Y, Rosengarth A, Luecke H (2007) Structure of the human p53 core domain in the absence of DNA. Acta Crystallogr D Biol Crystallogr 63(Pt 3):276–281

    CAS  PubMed  Google Scholar 

  55. Joerger AC, Fersht AR (2008) Structural biology of the tumor suppressor p53. Annu Rev Biochem 77:557–582

    CAS  PubMed  Google Scholar 

  56. Uversky VN, Oldfield CJ, Midic U, Xie H, Xue B, Vucetic S, Iakoucheva LM, Obradovic Z, Dunker AK (2009) Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genomics 10(Suppl 1):S7

    PubMed  PubMed Central  Google Scholar 

  57. Bianco R, Ciardiello F, Tortora G (2005) Chemosensitization by antisense oligonucleotides targeting MDM2. Curr Cancer Drug Targets 5(1):51–56

    CAS  PubMed  Google Scholar 

  58. Moll UM, Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1(14):1001–1008

    CAS  PubMed  Google Scholar 

  59. Nag S, Qin J, Srivenugopal KS, Wang M, Zhang R (2013) The MDM2-p53 pathway revisited. J Biomed Res 27(4):254–271

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274(5289):948–953

    CAS  PubMed  Google Scholar 

  61. Bochkareva E, Kaustov L, Ayed A, Yi GS, Lu Y, Pineda-Lucena A, Liao JC, Okorokov AL, Milner J, Arrowsmith CH, Bochkarev A (2005) Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc Natl Acad Sci U S A 102(43):15412–15417

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mora P, Carbajo RJ, Pineda-Lucena A, Sanchez del Pino MM, Perez-Paya E (2008) Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach. Proteins 71(4):1670–1685

    CAS  PubMed  Google Scholar 

  63. Lowe ED, Tews I, Cheng KY, Brown NR, Gul S, Noble ME, Gamblin SJ, Johnson LN (2002) Specificity determinants of recruitment peptides bound to phospho-CDK2/cyclin A. Biochemistry 41(52):15625–15634

    CAS  PubMed  Google Scholar 

  64. Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C (2002) Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol Cell 10(3):523–535

    CAS  PubMed  Google Scholar 

  65. Mujtaba S, He Y, Zeng L, Yan S, Plotnikova O, Sachchidanand SR, Zeleznik-Le NJ, Ronai Z, Zhou MM (2004) Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell 13(2):251–263

    CAS  PubMed  Google Scholar 

  66. Rustandi RR, Baldisseri DM, Weber DJ (2000) Structure of the negative regulatory domain of p53 bound to S100B(betabeta). Nat Struct Biol 7(7):570–574

    CAS  PubMed  Google Scholar 

  67. Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9(Suppl 1):S1

    PubMed  PubMed Central  Google Scholar 

  68. Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7:208

    PubMed  PubMed Central  Google Scholar 

  69. Ehretsmann CP, Carpousis AJ, Krisch HM (1992) Specificity of Escherichia coli endoribonuclease RNase E: in vivo and in vitro analysis of mutants in a bacteriophage T4 mRNA processing site. Genes Dev 6(1):149–159

    CAS  PubMed  Google Scholar 

  70. Huang H, Liao J, Cohen SN (1998) Poly(A)- and poly(U)-specific RNA 3′ tail shortening by E. coli ribonuclease E. Nature 391(6662):99–102

    CAS  PubMed  Google Scholar 

  71. Kushner SR (2002) mRNA decay in Escherichia coli comes of age. J Bacteriol 184(17):4658–4665 discussion 4657

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ow MC, Kushner SR (2002) Initiation of tRNA maturation by RNase E is essential for cell viability in E. coli. Genes Dev 16(9):1102–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Steege DA (2000) Emerging features of mRNA decay in bacteria. RNA 6(8):1079–1090

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Casaregola S, Jacq A, Laoudj D, McGurk G, Margarson S, Tempete M, Norris V, Holland IB (1992) Cloning and analysis of the entire Escherichia coli ams gene. ams is identical to hmp1 and encodes a 114 kDa protein that migrates as a 180 kDa protein. J Mol Biol 228(1):30–40

    CAS  PubMed  Google Scholar 

  75. Claverie-Martin F, Diaz-Torres MR, Yancey SD, Kushner SR (1991) Analysis of the altered mRNA stability (ams) gene from Escherichia coli. Nucleotide sequence, transcriptional analysis, and homology of its product to MRP3, a mitochondrial ribosomal protein from Neurospora crassa. J Biol Chem 266(5):2843–2851

    CAS  PubMed  Google Scholar 

  76. Lopez PJ, Marchand I, Joyce SA, Dreyfus M (1999) The C-terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo. Mol Microbiol 33(1):188–199

    CAS  PubMed  Google Scholar 

  77. Cohen SN, McDowall KJ (1997) RNase E: still a wonderfully mysterious enzyme. Mol Microbiol 23(6):1099–1106

    CAS  PubMed  Google Scholar 

  78. McDowall KJ, Cohen SN (1996) The N-terminal domain of the rne gene product has RNase E activity and is non-overlapping with the arginine-rich RNA-binding site. J Mol Biol 255(3):349–355

    CAS  PubMed  Google Scholar 

  79. Wachi M, Umitsuki G, Shimizu M, Takada A, Nagai K (1999) Escherichia coli cafA gene encodes a novel RNase, designated as RNase G, involved in processing of the 5′ end of 16S rRNA. Biochem Biophys Res Commun 259(2):483–488

    CAS  PubMed  Google Scholar 

  80. Kaberdin VR, Miczak A, Jakobsen JS, Lin-Chao S, McDowall KJ, von Gabain A (1998) The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly. Proc Natl Acad Sci U S A 95(20):11637–11642

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Callaghan AJ, Aurikko JP, Ilag LL, Gunter Grossmann J, Chandran V, Kuhnel K, Poljak L, Carpousis AJ, Robinson CV, Symmons MF, Luisi BF (2004) Studies of the RNA degradosome-organizing domain of the Escherichia coli ribonuclease RNase E. J Mol Biol 340(5):965–979

    CAS  PubMed  Google Scholar 

  82. Taraseviciene L, Bjork GR, Uhlin BE (1995) Evidence for an RNA binding region in the Escherichia coli processing endoribonuclease RNase E. J Biol Chem 270(44):26391–26398

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir N. Uversky or Lukasz Kurgan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oldfield, C.J., Uversky, V.N., Kurgan, L. (2019). Predicting Functions of Disordered Proteins with MoRFpred. In: Sikosek, T. (eds) Computational Methods in Protein Evolution. Methods in Molecular Biology, vol 1851. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8736-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8736-8_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8735-1

  • Online ISBN: 978-1-4939-8736-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics