Skip to main content

Exploring Enzyme Evolution from Changes in Sequence, Structure, and Function

  • Protocol
  • First Online:
Computational Methods in Protein Evolution

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1851))

Abstract

The goal of our research is to increase our understanding of how biology works at the molecular level, with a particular focus on how enzymes evolve their functions through adaptations to generate new specificities and mechanisms. FunTree (Sillitoe and Furnham, Nucleic Acids Res 44:D317–D323, 2016) is a resource that brings together sequence, structure, phylogenetic, and chemical and mechanistic information for 2340 CATH superfamilies (Sillitoe et al., Nucleic Acids Res 43:D376–D381, 2015) (which all contain at least one enzyme) to allow evolution to be investigated within a structurally defined superfamily.

We will give an overview of FunTree’s use of sequence and structural alignments to cluster proteins within a superfamily into structurally similar groups (SSGs) and generate phylogenetic trees augmented by ancestral character estimations (ACE). This core information is supplemented with new measures of functional similarity (Rahman et al., Nat Methods 11:171–174, 2014) to compare enzyme reactions based on overall bond changes, reaction centers (the local environment atoms involved in the reaction), and the structural similarities of the metabolites involved in the reaction. These trees are also decorated with taxonomic and Enzyme Commission (EC) code and GO annotations, forming the basis of a comprehensive web interface that can be found at http://www.funtree.info. In this chapter, we will discuss the various analyses and supporting computational tools in more detail, describing the steps required to extract information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sillitoe I, Furnham N (2016) FunTree: advances in a resource for exploring and contextualising protein function evolution. Nucleic Acids Res 44:D317–D323. https://doi.org/10.1093/nar/gkv1274

    Article  CAS  PubMed  Google Scholar 

  2. Sillitoe I, Lewis TE, Cuff A et al (2015) CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res 43:D376–D381. https://doi.org/10.1093/nar/gku947

    Article  CAS  PubMed  Google Scholar 

  3. Rahman SA, Cuesta SM, Furnham N et al (2014) EC-BLAST: a tool to automatically search and compare enzyme reactions. Nat Methods 11:171–174. https://doi.org/10.1038/nmeth.2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ruan J, Li H, Chen Z et al (2007) TreeFam: 2008 update. Nucleic Acids Res 36:D735–D740. https://doi.org/10.1093/nar/gkm1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bostock M (2017) https://d3js.org

  6. Tamuri AU, Laskowski RA (2010) ArchSchema: a tool for interactive graphing of related Pfam domain architectures. Bioinformatics 26:1260–1261. https://doi.org/10.1093/bioinformatics/btq119

    Article  CAS  PubMed  Google Scholar 

  7. Uniprot Consortium (2009) The universal protein resource (UniProt) 2009. Nucleic Acids Res 37:D169–D174. https://doi.org/10.1093/nar/gkn664

    Article  CAS  Google Scholar 

  8. Valdar WSJ (2002) Scoring residue conservation. Proteins Struct Funct Genet 48:227–241. https://doi.org/10.1002/prot.10146

    Article  CAS  PubMed  Google Scholar 

  9. Gutmanas A, Alhroub Y, Battle GM et al (2014) PDBe: Protein Data Bank in Europe. Nucleic Acids Res 42:D285–D291. https://doi.org/10.1093/nar/gkt1180

    Article  CAS  PubMed  Google Scholar 

  10. Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22:1540–1542. https://doi.org/10.1093/bioinformatics/btl117

    Article  CAS  PubMed  Google Scholar 

  11. Rahman S, Bashton M, Holliday GL et al (2009) Small Molecule Subgraph Detector (SMSD) toolkit. J Cheminform 1:12. https://doi.org/10.1186/1758-2946-1-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yachdav G, Goldberg T, Wilzbach S et al (2015) Anatomy of BioJS, an open source community for the life sciences. elife 4:e07009. https://doi.org/10.7554/eLife.07009

    Article  PubMed Central  Google Scholar 

  13. Ribeiro AJM, Holliday GL, Furnham N et al (2018) Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites. Nucleic Acids Res 46(D1):D618–D623

    Article  CAS  PubMed  Google Scholar 

  14. Furnham N, Dawson NL, Rahman SA et al (2016) Large-scale analysis exploring evolution of catalytic machineries and mechanisms in enzyme superfamilies. J Mol Biol 428:253–267. https://doi.org/10.1016/j.jmb.2015.11.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tyzack JD, Furnham N, Sillitoe I et al (2017) Understanding enzyme function evolution from a computational perspective. Curr Opin Struct Biol 47:131–139. https://doi.org/10.1016/j.sbi.2017.08.003

    Article  CAS  PubMed  Google Scholar 

  16. Furnham N, Sillitoe I, Holliday GL et al (2012) Exploring the evolution of novel enzyme functions within structurally defined protein superfamilies. PLoS Comput Biol 8:e1002403. https://doi.org/10.1371/journal.pcbi.1002403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Holliday GL, Bartlett GJ, Almonacid DE et al (2005) MACiE: a database of enzyme reaction mechanisms. Bioinformatics 21:4315–4316. https://doi.org/10.1093/bioinformatics/bti693

    Article  CAS  PubMed  Google Scholar 

  18. Furnham N, Holliday GL, de Beer TAP et al (2014) The catalytic site atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Res 42:D485–D489. https://doi.org/10.1093/nar/gkt1243

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Tyzack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tyzack, J.D., Furnham, N., Sillitoe, I., Orengo, C.M., Thornton, J.M. (2019). Exploring Enzyme Evolution from Changes in Sequence, Structure, and Function. In: Sikosek, T. (eds) Computational Methods in Protein Evolution. Methods in Molecular Biology, vol 1851. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8736-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8736-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8735-1

  • Online ISBN: 978-1-4939-8736-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics