Skip to main content

Navigating Among Known Structures in Protein Space

  • Protocol
  • First Online:
Computational Methods in Protein Evolution

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1851))

Abstract

Present-day protein space is the result of 3.7 billion years of evolution, constrained by the underlying physicochemical qualities of the proteins. It is difficult to differentiate between evolutionary traces and effects of physicochemical constraints. Nonetheless, as a rule of thumb, instances of structural reuse, or focusing on structural similarity, are likely attributable to physicochemical constraints, whereas sequence reuse, or focusing on sequence similarity, may be more indicative of evolutionary relationships. Both types of relationships have been studied and can provide meaningful insights to protein biophysics and evolution, which in turn can lead to better algorithms for protein search, annotation, and maybe even design.

In broad strokes, studies of protein space vary in the entities they represent, the similarity measure comparing these entities, and the representation used. The entities can be, for example, protein chains, domains, supra-domains, or smaller protein sub-parts denoted themes. The measures of similarity between the entities can be based on sequence, structure, function, or any combination of these. The representation can be global, encompassing the whole space, or local, focusing on a particular region surrounding protein(s) of interest. Global representations include lists of grouped proteins, protein networks, and maps. Networks are the abstraction that is derived most directly from the similarity data: each node is the protein entity (e.g., a domain), and edges connect similar domains. Selecting the entities, the similarity measure, and the abstraction are three intertwined decisions: the similarity measures allow us to identify the entities, and the selection of entities influences what is a meaningful similarity measure. Similarly, we seek entities that are related to each other in a way, for which a simple representation describes their relationships succinctly and accurately. This chapter will cover studies that rely on different entities, similarity measures, and a range of representations to better understand protein structure space. Scholars may use publicly available navigators offering a global representation, and in particular the hierarchical classifications SCOP, CATH, and ECOD, or a local representation, which encompass structural alignment algorithms. Alternatively, scholars can configure their own navigator using existing tools. To demonstrate this DIY (do it yourself) approach for navigating in protein space, we investigate substrate-binding proteins. By presenting sequence similarities among this large and diverse protein family as a network, we can infer that one member (pdb ID 4ntl; of yet unknown function) may bind methionine and suggest a putative binding mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notice that the terms used here characterize the similarity measure, not the style of navigation in protein space, to use the same terms as in the Needleman–Wunsch and Smith–Waterman sequence alignment algorithms.

References

  1. Kolodny R, Pereyaslavets L, Samson AO, Levitt M (2012) On the universe of protein folds. Annu Rev Biophys 42:559. https://doi.org/10.1146/annurev-biophys-083012-130432

    Article  CAS  Google Scholar 

  2. Ben-Tal N, Kolodny R (2014) Representation of the protein universe using classifications, maps, and networks. Israel J Chem 54:1286

    Article  CAS  Google Scholar 

  3. Zeldovich KB, Shakhnovich EI (2008) Understanding protein evolution: from protein physics to Darwinian selection. Annu Rev Phys Chem 59:105–127

    Article  CAS  PubMed  Google Scholar 

  4. Trifonov EN, Berezovsky IN (2003) Evolutionary aspects of protein structure and folding. Curr Opin Struct Biol 13(1):110–114

    Article  CAS  PubMed  Google Scholar 

  5. Choi IG, Kim SH (2006) Evolution of protein structural classes and protein sequence families. Proc Natl Acad Sci U S A 103(38):14056–14061. https://doi.org/10.1073/pnas.0606239103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dokholyan NV, Shakhnovich B, Shakhnovich EI (2002) Expanding protein universe and its origin from the biological big bang. Proc Natl Acad Sci 99(22):14132–14136. https://doi.org/10.1073/pnas.202497999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alva V, Remmert M, Biegert A, Lupas AN, Söding J (2010) A galaxy of folds. Protein Sci 19(1):124–130. https://doi.org/10.1002/pro.297

    Article  CAS  PubMed  Google Scholar 

  8. Farías-Rico JA, Schmidt S, Höcker B (2014) Evolutionary relationship of two ancient protein superfolds. Nat Chem Biol 10(9):710–715. https://doi.org/10.1038/nchembio.1579 http://www.nature.com/nchembio/journal/v10/n9/abs/nchembio.1579.html#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  9. Nepomnyachiy S, Ben-Tal N, Kolodny R (2017) Complex evolutionary footprints revealed in an analysis of reused protein segments of diverse lengths. Proc Natl Acad Sci U S A 114:11703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Skolnick J, Arakaki AK, Lee SY, Brylinski M (2009) The continuity of protein structure space is an intrinsic property of proteins. Proc Natl Acad Sci 106:15690. https://doi.org/10.1073/pnas.0907683106

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nepomnyachiy S, Ben-Tal N, Kolodny R (2014) Global view of the protein universe. Proc Natl Acad Sci 111:11691. https://doi.org/10.1073/pnas.1403395111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mackenzie CO, Zhou J, Grigoryan G (2016) Tertiary alphabet for the observable protein structural universe. Proc Natl Acad Sci U S A 113(47):E7438–E7447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kolodny R, Petrey D, Honig B (2006) Protein structure comparison: implications for the nature of ‘fold space’, and structure and function prediction. Curr Opin Struct Biol 16(3):393–398

    Article  CAS  PubMed  Google Scholar 

  14. Osadchy M, Kolodny R (2011) Maps of protein structure space reveal a fundamental relationship between protein structure and function. Proc Natl Acad Sci 108(30):12301–12306. https://doi.org/10.1073/pnas.1102727108

    Article  PubMed  PubMed Central  Google Scholar 

  15. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koehl P (2006) Protein structure classification. In: Reviews in Computational Chemistry. John Wiley & Sons, Inc., New York, pp 1–55. https://doi.org/10.1002/0471780367.ch1

    Chapter  Google Scholar 

  17. Ponting CP, Russell RR (2002) The natural history of protein domains. Annu Rev Biophys Biomol Struct 31(1):45–71. https://doi.org/10.1146/annurev.biophys.31.082901.134314

    Article  CAS  PubMed  Google Scholar 

  18. Vogel C, Berzuini C, Bashton M, Gough J, Teichmann SA (2004) Supra-domains: evolutionary units larger than single protein domains. J Mol Biol 336(3):809–823. https://doi.org/10.1016/j.jmb.2003.12.026

    Article  CAS  PubMed  Google Scholar 

  19. Kolodny R, Koehl P, Guibas L, Levitt M (2002) Small libraries of protein fragments model native protein structures accurately. J Mol Biol 323(2):297–307

    Article  CAS  PubMed  Google Scholar 

  20. Vanhee P, Verschueren E, Baeten L, Stricher F, Serrano L, Rousseau F, Schymkowitz J (2011) BriX: a database of protein building blocks for structural analysis, modeling and design. Nucleic Acids Res 39(Suppl 1):D435–D442

    Article  CAS  PubMed  Google Scholar 

  21. Davis FP, Sali A (2005) PIBASE: a comprehensive database of structurally defined protein interfaces. Bioinformatics 21(9):1901–1907

    Article  CAS  PubMed  Google Scholar 

  22. Vanhee P, Reumers J, Stricher F, Baeten L, Serrano L, Schymkowitz J, Rousseau F (2009) PepX: a structural database of non-redundant protein–peptide complexes. Nucleic Acids Res 38(Suppl 1):D545–D551

    PubMed  PubMed Central  Google Scholar 

  23. Fernandez-Fuentes N, Dybas JM, Fiser A (2010) Structural characteristics of novel protein folds. PLoS Comput Biol 6(4):e1000750

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ovchinnikov S, Park H, Varghese N, Huang P-S, Pavlopoulos GA, Kim DE, Kamisetty H, Kyrpides NC, Baker D (2017) Protein structure determination using metagenome sequence data. Science 355(6322):294–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pieper U, Eswar N, Davis FP, Braberg H, Madhusudhan MS, Rossi A, Marti-Renom M, Karchin R, Webb BM, Eramian D (2006) MODBASE: a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 34(Suppl 1):D291–D295

    Article  CAS  PubMed  Google Scholar 

  26. Lo Conte L, Ailey B, Hubbard TJP, Brenner SE, Murzin AG, Chothia C (2000) SCOP: a structural classification of proteins database. Nucleic Acids Res 28(1):257–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Orengo C, Michie A, Jones S, Jones D, Swindells M, Thornton J (1997) CATH-a hierarchic classification of protein domain structures. Structure 5(8):1093–1108

    Article  CAS  PubMed  Google Scholar 

  28. Cheng H, Schaeffer RD, Liao Y, Kinch LN, Pei J, Shi S, Kim B-H, Grishin NV (2014) ECOD: an evolutionary classification of protein domains. PLoS Comput Biol 10(12):e1003926. https://doi.org/10.1371/journal.pcbi.1003926

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lupas AN, Ponting CP, Russell RB (2001) On the evolution of protein folds: are similar motifs in different protein folds the result of convergence, insertion, or relics of an ancient peptide world? J Struct Biol 134(2–3):191–203

    Article  CAS  PubMed  Google Scholar 

  30. Soding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21(7):951–960

    Article  PubMed  Google Scholar 

  31. Eddy SR (2009) A new generation of homology search tools based on probabilistic inference. Genome Inform 1:205–211

    Google Scholar 

  32. Alva V, Söding J, Lupas AN (2016) A vocabulary of ancient peptides at the origin of folded proteins. elife 4:e09410

    Article  Google Scholar 

  33. Kosloff M, Kolodny R (2008) Sequence-similar, structure-dissimilar protein pairs in the PDB. Proteins 71(2):891–902

    Article  CAS  PubMed  Google Scholar 

  34. Narunsky A, Nepomnyachiy S, Ashkenazy H, Kolodny R, Ben-Tal N (2015) ConTemplate suggests possible alternative conformations for a query protein of known structure. Structure 23(11):2162–2170

    Article  CAS  PubMed  Google Scholar 

  35. Holm L, Sander C (1996) Mapping the protein universe. Science 273(5275):595–603

    Article  CAS  PubMed  Google Scholar 

  36. Skolnick J, Gao M, Zhou H (2014) On the role of physics and evolution in dictating protein structure and function. Israel J Chem 54(8–9):1176–1188

    Article  CAS  Google Scholar 

  37. Hasegawa H, Holm L (2009) Advances and pitfalls of protein structural alignment. Curr Opin Struct Biol 19(3):341–348

    Article  CAS  PubMed  Google Scholar 

  38. Kolodny R, Koehl P, Levitt M (2005) Comprehensive evaluation of protein structure alignment methods: scoring by geometric measures. J Mol Biol 346(4):1173–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kolodny R, Linial N (2004) Approximate protein structural alignment in polynomial time. Proc Natl Acad Sci U S A 101(33):12201–12206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carugo O (2007) Recent progress in measuring structural similarity between proteins. Curr Protein Pept Sci 8(3):241

    Article  Google Scholar 

  41. Yanover C, Vanetik N, Levitt M, Kolodny R, Keasar C (2014) Redundancy-weighting for better inference of protein structural features. Bioinformatics 30(16):2295–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13):1658–1659

    Article  CAS  PubMed  Google Scholar 

  43. Wang G, Dunbrack RL (2003) PISCES: a protein sequence culling server. Bioinformatics 19(12):1589–1591. https://doi.org/10.1093/bioinformatics/btg224

    Article  CAS  PubMed  Google Scholar 

  44. Choi I-G, Kim S-H (2007) Global extent of horizontal gene transfer. Proc Natl Acad Sci 104(11):4489–4494. https://doi.org/10.1073/pnas.0611557104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Orengo CA, Flores TP, Taylor WR, Thornton JM (1993) Identification and classification of protein fold families. Protein Eng 6(5):485–500. https://doi.org/10.1093/protein/6.5.485

    Article  CAS  PubMed  Google Scholar 

  46. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222. https://doi.org/10.1093/nar/gkt1223

    Article  CAS  PubMed  Google Scholar 

  47. Pearl FMG, Sillitoe I, Orengo CA (2015) Protein structure classification. In: eLS. John Wiley & Sons, Ltd., New York. https://doi.org/10.1002/9780470015902.a0003033.pub3

    Chapter  Google Scholar 

  48. Levitt M, Chothia C (1976) Structural patterns in globular proteins. Nature 261(5561):552–558

    Article  CAS  PubMed  Google Scholar 

  49. Holland TA, Veretnik S, Shindyalov IN, Bourne PE (2006) Partitioning protein structures into domains: why is it so difficult? J Mol Biol 361(3):562–590

    Article  CAS  PubMed  Google Scholar 

  50. Hadley C, Jones DT (1999) A systematic comparison of protein structure classifications: SCOP, CATH and FSSP. Structure 7(9):1099–1112

    Article  CAS  PubMed  Google Scholar 

  51. Day R, Beck DAC, Armen RS, Daggett V (2003) A consensus view of fold space: combining SCOP, CATH, and the Dali Domain Dictionary. Protein Sci 12(10):2150–2160. https://doi.org/10.1110/ps.0306803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR (2010) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39(Suppl 1):D225–D229

    PubMed  PubMed Central  Google Scholar 

  53. Kelley LA, Sternberg MJ (2015) Partial protein domains: evolutionary insights and bioinformatics challenges. Genome Biol 16(1):1–3. https://doi.org/10.1186/s13059-015-0663-8

    Article  CAS  Google Scholar 

  54. Veretnik S, Gu J, Wodak S (2009) Identifying structural domains in proteins. In: Gu G, Bourne P (eds) Structural bioinformatics, 2nd edn. Wiley-Blackwell, Hoboken, NJ, pp 485–513

    Google Scholar 

  55. Schaeffer RD, Jonsson AL, Simms AM, Daggett V (2011) Generation of a consensus protein domain dictionary. Bioinformatics 27(1):46–54. https://doi.org/10.1093/bioinformatics/btq625

    Article  CAS  PubMed  Google Scholar 

  56. Csaba G, Birzele F, Zimmer R (2009) Systematic comparison of SCOP and CATH: a new gold standard for protein structure analysis. BMC Struct Biol 9(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  57. Redfern OC, Harrison A, Dallman T, Pearl FM, Orengo CA (2007) CATHEDRAL: a fast and effective algorithm to predict folds and domain boundaries from multidomain protein structures. PLoS Comput Biol 3(11):e232. https://doi.org/10.1371/journal.pcbi.0030232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou H, Xue B, Zhou Y (2007) DDOMAIN: dividing structures into domains using a normalized domain–domain interaction profile. Protein Sci 16(5):947–955. https://doi.org/10.1110/ps.062597307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Alexandrov N, Shindyalov I (2003) PDP: protein domain parser. Bioinformatics 19(3):429–430. https://doi.org/10.1093/bioinformatics/btg006

    Article  CAS  PubMed  Google Scholar 

  60. Krishna SS, Grishin NV (2005) Structural drift: a possible path to protein fold change. Bioinformatics 21(8):1308–1310

    Article  CAS  PubMed  Google Scholar 

  61. Pascual-García A, Abia D, Ortiz ÁR, Bastolla U (2009) Cross-over between discrete and continuous protein structure space: insights into automatic classification and networks of protein structures. PLoS Comput Biol 5(3):e1000331. https://doi.org/10.1371/journal.pcbi.1000331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Edwards H, Deane CM (2015) Structural bridges through fold space. PLoS Comput Biol 11(9):e1004466

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fox NK, Brenner SE, Chandonia J-M (2014) SCOPe: structural classification of proteins—extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res 42(D1):D304–D309. https://doi.org/10.1093/nar/gkt1240

    Article  CAS  PubMed  Google Scholar 

  64. Andreeva A, Howorth D, Chothia C, Kulesha E, Murzin AG (2013) SCOP2 prototype: a new approach to protein structure mining. Nucleic Acids Res 42:D310. https://doi.org/10.1093/nar/gkt1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ellson J, Gansner E, Koutsofios L, North SC, Woodhull G (2001) Graphviz—open source graph drawing tools. In: International symposium on graph drawing. Springer, Heidelberg, pp 483–484

    Google Scholar 

  66. Prlić A, Bliven S, Rose PW, Bluhm WF, Bizon C, Godzik A, Bourne PE (2010) Pre-calculated protein structure alignments at the RCSB PDB website. Bioinformatics 26(23):2983–2985. https://doi.org/10.1093/bioinformatics/btq572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Krissinel E, Henrick K (2003) Protein structure comparison in 3D based on secondary structure matching (SSM) followed by C-alpha alignment, scored by a new structural similarity function. Proceedings of the 5th International Conference on Molecular Structural Biology, Vienna, vol. 88

    Google Scholar 

  68. Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D 60(Pt 12 Pt 1):2256–2268

    Article  CAS  PubMed  Google Scholar 

  69. Madej T, Lanczycki CJ, Zhang D, Thiessen PA, Geer RC, Marchler-Bauer A (2014) MMDB and VAST+: tracking structural similarities between macromolecular complexes. Nucleic Acids Res D42:D297. https://doi.org/10.1093/nar/gkt1208

    Article  CAS  Google Scholar 

  70. Mezulis S, Sternberg MJE, Kelley LA (2016) PhyreStorm: a web server for fast structural searches against the PDB. J Mol Biol 428(4):702–708. https://doi.org/10.1016/j.jmb.2015.10.017

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33(7):2302–2309. https://doi.org/10.1093/nar/gki524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wiederstein M, Gruber M, Frank K, Melo F, Sippl Manfred J (2014) Structure-based characterization of multiprotein complexes. Structure 22(7):1063–1070. https://doi.org/10.1016/j.str.2014.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Berezovsky IN, Guarnera E, Zheng Z (2017) Basic units of protein structure, folding, and function. Prog Biophys Mol Biol 128:85–99. https://doi.org/10.1016/j.pbiomolbio.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  74. Menke M, Berger B, Cowen L (2008) Matt: local flexibility aids protein multiple structure alignment. PLoS Comput Biol 4(1):e10

    Article  PubMed  PubMed Central  Google Scholar 

  75. Shindyalov I, Bourne P (1998) Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11(9):739–747

    Article  CAS  PubMed  Google Scholar 

  76. Ortiz A, Strauss C, Olmea O (2002) MAMMOTH (matching molecular models obtained from theory): an automated method for model comparison. Protein Sci 11(11):2606–2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tung CH, Huang JW, Yang JM (2007) Kappa-alpha plot derived structural alphabet and BLOSUM-like substitution matrix for rapid search of protein structure database. Genome Biol 8(3):R31

    Article  PubMed  PubMed Central  Google Scholar 

  78. Budowski-Tal I, Nov Y, Kolodny R (2010) FragBag, an accurate representation of protein structure, retrieves structural neighbors from the entire PDB quickly and accurately. Proc Natl Acad Sci U S A 107(8):3481–3486. https://doi.org/10.1073/pnas.0914097107

    Article  PubMed  PubMed Central  Google Scholar 

  79. Petrey D, Xiang Z, Tang CL, Xie L, Gimpelev M, Mitros T, Soto CS, Goldsmith-Fischman S, Kernytsky A, Schlessinger A, Koh IY, Alexov E, Honig B (2003) Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modeling. Proteins 53(Suppl 6):430–435. https://doi.org/10.1002/prot.10550

    Article  CAS  PubMed  Google Scholar 

  80. Subbiah S, Laurents DV, Levitt M (1993) Structural similarity of DNA-binding domains of bacteriophage repressors and the globin core. Curr Biol 3(3):141–148

    Article  CAS  PubMed  Google Scholar 

  81. Saito R, Smoot ME, Ono K, Ruscheinski J, Wang P-L, Lotia S, Pico AR, Bader GD, Ideker T (2012) A travel guide to Cytoscape plugins. Nat Methods 9(11):1069–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nepomnyachiy S, Ben-Tal N, Kolodny R (2015) CyToStruct: augmenting the network visualization of cytoscape with the power of molecular viewers. Structure 23(5):941–948

    Article  CAS  PubMed  Google Scholar 

  83. Morris JH, Huang CC, Babbitt PC, Ferrin TE (2007) structureViz: linking Cytoscape and UCSF chimera. Bioinformatics 23(17):2345–2347. https://doi.org/10.1093/bioinformatics/btm329

    Article  CAS  PubMed  Google Scholar 

  84. Schrodinger, LLC (2010) The PyMOL molecular graphics system, Version 1.3r1. Schrodinger, LLC, New York

    Google Scholar 

  85. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  86. Jmol: an open-source java viewer for chemical structure in 3D. http://www.jmol.org/

  87. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  88. Rose AS, Hildebrand PW (2015) NGL viewer: a web application for molecular visualization. Nucleic Acids Res 43(Web Server issue):W576–W579. https://doi.org/10.1093/nar/gkv402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. O’Donoghue SI, Goodsell DS, Frangakis AS, Jossinet F, Laskowski RA, Nilges M, Saibil HR, Schafferhans A, Wade RC, Westhof E (2010) Visualization of macromolecular structures. Nat Methods 7:S42–S55

    Article  PubMed  PubMed Central  Google Scholar 

  90. Berntsson RP-A, Smits SH, Schmitt L, Slotboom D-J, Poolman B (2010) A structural classification of substrate-binding proteins. FEBS Lett 584(12):2606–2617

    Article  CAS  PubMed  Google Scholar 

  91. Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T, Sokolov A, Graim K, Funk C, Verspoor K, Ben-Hur A (2013) A large-scale evaluation of computational protein function prediction. Nat Methods 10(3):221–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, Ben-Tal N (2003) ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19(1):163–164

    Article  CAS  PubMed  Google Scholar 

  93. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44(W1):W344–W350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Kolodny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Narunsky, A., Ben-Tal, N., Kolodny, R. (2019). Navigating Among Known Structures in Protein Space. In: Sikosek, T. (eds) Computational Methods in Protein Evolution. Methods in Molecular Biology, vol 1851. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8736-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8736-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8735-1

  • Online ISBN: 978-1-4939-8736-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics