Skip to main content

Culture and Molecular Profiling of the Respiratory Tract Microbiota

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1849))

Abstract

Microbiome research of host-associated communities has been advanced recently through improvements in sequencing technologies and bioinformatic methods. Traditional microbiological culture, when combined with molecular techniques, can provide a sensitive platform to comprehensively study the airway microbiota. Here we describe the culture methods necessary to capture a large proportion of the airway microbiota and molecular methods for profiling bacterial communities through the 16S rRNA gene, which, when combined, offer a more complete picture of the diversity of airway microbial communities than either method alone.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Man WH, de Steenhuijsen Piters WAA, Bogaert D (2017) The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol 15(5):259–270

    Article  CAS  Google Scholar 

  2. Stearns JC, Davidson CJ, McKeon S, Whelan FJ, Fontes ME, Schryvers AB et al (2015) Culture and molecular-based profiles show shifts in bacterial communities of the upper respiratory tract that occur with age. ISMEJ 9:1246–1259

    Article  Google Scholar 

  3. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A et al (2011 Oct) Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 184(8):957–963

    Article  Google Scholar 

  4. Bassis CM, Tang AL, Young VB, Pynnonen MA (2014) The nasal cavity microbiota of healthy adults. Microbiome 2:27

    Article  Google Scholar 

  5. Bogaert D, Keijser B, Huse S, Rossen J, Veenhoven R, van Gils E et al (2011) Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. Semple M, editor. PLoS One 6(2):e17035

    Article  CAS  Google Scholar 

  6. Whelan FJ, Verschoor CP, Stearns JC, Rossi L, Johnstone J, Surette MG et al (2014) The loss of topography in the microbial communities of the upper respiratory tract in the elderly. Ann Am Thorac Soc 11(4):513–521

    Article  Google Scholar 

  7. Chotirmall SH, Burke CM (2015) Aging and the microbiome: implications for asthma in the elderly? Expert Rev Respir Med 9(2):125–128

    Article  CAS  Google Scholar 

  8. Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Beck JM, Huffnagle GB et al (2015) Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann Am Thorac Soc 12(6):821–830

    Article  Google Scholar 

  9. Segal LN, Alekseyenko AV, Clemente JC, Kulkarni R, Wu B, Gao Z et al (2013) Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome 1(1):19

    Article  Google Scholar 

  10. Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Falkowski NR, Huffnagle GB et al (2017) Bacterial topography of the healthy human lower respiratory tract. MBio 8(1):e02287-16. https://doi.org/10.1128/mBio.02287-16

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lau JT, Whelan FJ, Herath I, Lee CH, Collins SM, Bercik P et al (2016) Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med 8(1):72

    Article  Google Scholar 

  12. Sibley CD, Grinwis ME, Field TR, Eshaghurshan CS, Faria MM, Dowd SE et al (2011) Culture enriched molecular profiling of the cystic fibrosis airway microbiome. PLoS One 6(7):11

    Article  Google Scholar 

  13. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD et al (2016) Culturing of “unculturable”human microbiota reveals novel taxa and extensive sporulation. Nature 533(7604):543–546

    Article  CAS  Google Scholar 

  14. Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW et al (2012) The human microbiome project: a community resource for the healthy human microbiome. PLoS Biol 10(8):e1001377

    Article  CAS  Google Scholar 

  15. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214

    Article  Google Scholar 

  16. Stearns JC, Lynch MDL, Senadheera DB, Tenenbaum HC, Goldberg MB, Cvitkovitch DG et al (2011) Bacterial biogeography of the human digestive tract. Sci Rep 1:170

    Article  CAS  Google Scholar 

  17. Bartram AK, Lynch MDJ, Stearns JC, Moreno-Hagelsieb G, Neufeld JD (2011) Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end illumina reads. Appl Environ Microbiol 77(11):3846–3852

    Article  CAS  Google Scholar 

  18. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59

    Article  CAS  Google Scholar 

  19. Caporaso GJ, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  Google Scholar 

  20. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  CAS  Google Scholar 

  21. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217

    Article  CAS  Google Scholar 

  22. Kuczynski J, Lauber CL, Walters WA, Parfrey LW, Clemente JC, Gevers D et al (2011) Experimental and analytical tools for studying the human microbiome. Nat Rev Genet 13(1):47–58

    Article  Google Scholar 

Download references

Acknowledgments

Thank you to the members of the Surette laboratory as well as the clinicians and patients who have helped us improve the culturing conditions and techniques described within over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Surette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Whelan, F.J., Rossi, L., Stearns, J.C., Surette, M.G. (2018). Culture and Molecular Profiling of the Respiratory Tract Microbiota. In: Beiko, R., Hsiao, W., Parkinson, J. (eds) Microbiome Analysis. Methods in Molecular Biology, vol 1849. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8728-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8728-3_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8726-9

  • Online ISBN: 978-1-4939-8728-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics