Skip to main content

Transkingdom Networks: A Systems Biology Approach to Identify Causal Members of Host–Microbiota Interactions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1849))

Abstract

Improvements in sequencing technologies and reduced experimental costs have resulted in a vast number of studies generating high-throughput data. Although the number of methods to analyze these “omics” data has also increased, computational complexity and lack of documentation hinder researchers from analyzing their high-throughput data to its true potential. In this chapter we detail our data-driven, transkingdom network (TransNet) analysis protocol to integrate and interrogate multi-omics data. This systems biology approach has allowed us to successfully identify important causal relationships between different taxonomic kingdoms (e.g., mammals and microbes) using diverse types of data.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schuster SC (2008) Next-generation sequencing transforms today's biology. Nat Methods 5(1):16–18

    Article  CAS  Google Scholar 

  2. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46

    Article  CAS  Google Scholar 

  3. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351

    Article  CAS  Google Scholar 

  4. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24(3):133–141

    Article  CAS  Google Scholar 

  5. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92(5):255–264

    Article  CAS  Google Scholar 

  6. Erickson AR et al (2012) Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn's disease. PLoS One 7(11):e49138

    Article  CAS  Google Scholar 

  7. Moreno-Risueno MA, Busch W, Benfey PN (2010) Omics meet networks—using systems approaches to infer regulatory networks in plants. Curr Opin Plant Biol 13(2):126–131

    Article  Google Scholar 

  8. Imhann F et al (2016) Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. In: Gut

    Google Scholar 

  9. Joyce AR, Palsson BO (2006) The model organism as a system: integrating 'omics' data sets. Nat Rev Mol Cell Biol 7(3):198–210

    Article  CAS  Google Scholar 

  10. Gehlenborg N et al (2010) Visualization of omics data for systems biology. Nat Methods 7(3 Suppl):S56–S68

    Article  CAS  Google Scholar 

  11. Poirel CL et al (2013) Reconciling differential gene expression data with molecular interaction networks. Bioinformatics 29(5):622–629

    Article  CAS  Google Scholar 

  12. Zhang W, Li F, Nie L (2010) Integrating multiple 'omics' analysis for microbial biology: application and methodologies. Microbiology 156(Pt 2):287–301

    Article  CAS  Google Scholar 

  13. Greer R et al (2016) Investigating a holobiont: Microbiota perturbations and transkingdom networks. Gut Microbes 7(2):126–135

    Article  Google Scholar 

  14. Greer RL et al (2016) Akkermansia muciniphila mediates negative effects of IFNgamma on glucose metabolism. Nat Commun 7:13329

    Article  CAS  Google Scholar 

  15. Morgun A et al (2015) Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut 64(11):1732–1743

    Article  CAS  Google Scholar 

  16. Mine KL et al (2013) Gene network reconstruction reveals cell cycle and antiviral genes as major drivers of cervical cancer. Nat Commun 4:1806

    Article  Google Scholar 

  17. Schirmer M et al (2016) Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell 167(4):1125–1136 e8

    Article  CAS  Google Scholar 

  18. Shulzhenko N et al (2011) Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med 17(12):1585–1593

    Article  CAS  Google Scholar 

  19. Dong X et al (2015) Reverse enGENEering of Regulatory Networks from Big Data: A Roadmap for Biologists. Bioinform Biol Insights 9:61–74

    Article  Google Scholar 

  20. Caporaso JG et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  CAS  Google Scholar 

  21. Trapnell C et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  Google Scholar 

  22. Laird PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11(3):191–203

    Article  CAS  Google Scholar 

  23. Krumm N et al (2012) Copy number variation detection and genotyping from exome sequence data. Genome Res 22(8):1525–1532

    Article  CAS  Google Scholar 

  24. Perez-Diez A, Morgun A, Shulzhenko N (2007) Microarrays for cancer diagnosis and classification. Adv Exp Med Biol 593:74–85

    Article  Google Scholar 

  25. Zhao S et al (2014) Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One 9(1):e78644

    Article  Google Scholar 

  26. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6):863–864

    Article  CAS  Google Scholar 

  27. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetJ 17(1):10

    Article  Google Scholar 

  28. Haas BJ et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512

    Article  CAS  Google Scholar 

  29. Mortazavi A et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  Google Scholar 

  30. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106

    Article  CAS  Google Scholar 

  31. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40(10):4288–4297

    Article  CAS  Google Scholar 

  32. Stackebrandt E, Goebel BM (1994) Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int J Syst Evol Microbiol 44(4):846–849

    Article  CAS  Google Scholar 

  33. Lane DJ et al (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82(20):6955–6959

    Article  CAS  Google Scholar 

  34. Brookman JL et al (2000) Identification and characterization of anaerobic gut fungi using molecular methodologies based on ribosomal ITS1 and 185 rRNA. Microbiology 146(Pt 2):393–403

    Article  CAS  Google Scholar 

  35. Schoch CL et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109(16):6241–6246

    Article  CAS  Google Scholar 

  36. Sharpton TJ (2014) An introduction to the analysis of shotgun metagenomic data. Front Plant Sci 5:209

    Article  Google Scholar 

  37. Kuczynski J et al (2011) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Bioinformatics 10:7 Chapter 10. Unit

    PubMed  Google Scholar 

  38. Schloss PD et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  CAS  Google Scholar 

  39. Paulson JN et al (2013) Differential abundance analysis for microbial marker-gene surveys. Nat Methods 10(12):1200–1202

    Article  CAS  Google Scholar 

  40. Meyer F et al (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386

    Article  CAS  Google Scholar 

  41. Huson DH, Weber N (2013) Microbial community analysis using MEGAN. Methods Enzymol 531:465–485

    Article  CAS  Google Scholar 

  42. Segata N et al (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9(8):811–814

    Article  CAS  Google Scholar 

  43. Lindgreen S, Adair KL, Gardner PP (2016) An evaluation of the accuracy and speed of metagenome analysis tools. Sci Rep 6:19233

    Article  CAS  Google Scholar 

  44. Langmead B et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  Google Scholar 

  45. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12(1):59–60

    Article  CAS  Google Scholar 

  46. Rodrigues RR, Barry CT (2011) Gene pathway analysis of hepatocellular carcinoma genomic expression datasets. J Surg Res 170(1):e85–e92

    Article  CAS  Google Scholar 

  47. Morgun A et al (2006) Molecular profiling improves diagnoses of rejection and infection in transplanted organs. Circ Res 98(12):e74–e83

    Article  CAS  Google Scholar 

  48. Yambartsev A et al (2016) Unexpected links reflect the noise in networks. Biol Direct 11(1):52

    Article  Google Scholar 

  49. Saccenti E (2017) Correlation patterns in experimental data are affected by normalization procedures: consequences for data analysis and network inference. J Proteome Res 16(2):619–634

    Article  CAS  Google Scholar 

  50. Hua YJ et al (2008) Comparison of normalization methods with microRNA microarray. Genomics 92(2):122–128

    Article  CAS  Google Scholar 

  51. Li P et al (2015) Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data. BMC Bioinform 16:347

    Article  Google Scholar 

  52. Gautier (2004) L., et al., affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3):307–315

    Article  CAS  Google Scholar 

  53. Ritchie (2015) M.E., et al., limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47

    Article  Google Scholar 

  54. de la Fuente A et al (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20(18):3565–3574

    Article  Google Scholar 

  55. Weiss S et al (2016) Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J 10(7):1669–1681

    Article  CAS  Google Scholar 

  56. Thomas LD et al (2016) Differentially correlated genes in co-expression networks control phenotype transitions. F1000Res 5:2740

    Article  Google Scholar 

  57. Skinner J et al (2011) Construct and Compare Gene Coexpression Networks with DAPfinder and DAPview. BMC Bioinform 12:286

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Karen N. D’Souza, Khiem Lam, and Dr. Xiaoxi Dong for their help in writing the book chapter. This work was supported by the NIH U01 AI109695 (AM) and R01 DK103761 (NS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard R. Rodrigues or Andrey Morgun .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rodrigues, R.R., Shulzhenko, N., Morgun, A. (2018). Transkingdom Networks: A Systems Biology Approach to Identify Causal Members of Host–Microbiota Interactions. In: Beiko, R., Hsiao, W., Parkinson, J. (eds) Microbiome Analysis. Methods in Molecular Biology, vol 1849. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8728-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8728-3_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8726-9

  • Online ISBN: 978-1-4939-8728-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics