Skip to main content

Sequential Phosphopeptide Enrichment for Phosphoproteome Analysis of Filamentous Fungi: A Test Case Using Magnaporthe oryzae

  • Protocol
  • First Online:
Plant Pathogenic Fungi and Oomycetes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1848))

Abstract

A number of challenges have to be overcome to identify a complete complement of phosphorylated proteins, the phosphoproteome, from cells and tissues. Phosphorylated proteins are typically of low abundance and moreover, the proportion of phosphorylated sites on a given protein is generally low. The challenge is further compounded when the tissue from which protein can be recovered is limited. Global phosphoproteomics primarily relies on efficient enrichment methods for phosphopeptides involving affinity binding coupled with analysis by fast high-resolution mass spectrometry (MS) and subsequent identification using various software packages. Here, we describe an effective protocol for phosphopeptide enrichment using an Iron-IMAC resin in combination with titanium dioxide (TiO2) beads from trypsin digested protein samples of the filamentous fungus Magnaporthe oryzae. Representative protocols for LC-MS/MS analysis and phosphopeptide identification are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 1:90. https://doi.org/10.1038/srep00090

    Article  PubMed Central  CAS  Google Scholar 

  2. Yachie N, Saito R, Sugiyama N et al (2011) Integrative features of the yeast phosphoproteome and protein-protein interaction map. PLoS Comput Biol 7:e1001064. https://doi.org/10.1371/journal.pcbi.1001064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wilhelm M, Schlegl J, Hahne H et al (2014) Mass-spectrometry-based draft of the human proteome. Nature 509:582–587. https://doi.org/10.1038/nature13319

    Article  PubMed  CAS  Google Scholar 

  4. Zhou H, Di Palma S, Preisinger C et al (2013) Toward a comprehensive characterization of a human Cancer cell Phosphoproteome. J Proteome Res 12:260–271. https://doi.org/10.1021/pr300630k

    Article  PubMed  CAS  Google Scholar 

  5. Rosenberg A, Soufi B, Ravikumar V et al (2015) Phosphoproteome dynamics mediate revival of bacterial spores. BMC Biol 13:76. https://doi.org/10.1186/s12915-015-0184-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Humphrey SJ, Azimifar SB, Mann M (2015) High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat Biotechnol 33:990–995. https://doi.org/10.1038/nbt.3327

    Article  PubMed  CAS  Google Scholar 

  7. Lasonder E, Treeck M, Alam M, Tobin AB (2012) Insights into the Plasmodium falciparum schizont phospho-proteome. Microbes Infect 14:811–819. https://doi.org/10.1016/j.micinf.2012.04.008

    Article  PubMed  CAS  Google Scholar 

  8. Leitner A (2016) Enrichment strategies in phosphoproteomics. In: Von Stecow L (ed) Methods in molecular biology. Springer, New York, pp 105–121

    Google Scholar 

  9. Dunn J, Reid G, Bruening ML (2010) Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom Rev 29:29–54. https://doi.org/10.1002/mas

    Article  PubMed  CAS  Google Scholar 

  10. Mann M, Ong S, Gr M et al (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20:261–268. https://doi.org/10.1016/S0167-7799(02)01944-3

    Article  PubMed  CAS  Google Scholar 

  11. Olsen JV, Macek B, Lange O et al (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4:709–712. https://doi.org/10.1038/nmeth1060

    Article  PubMed  CAS  Google Scholar 

  12. Fílla J, Honys D (2012) Enrichment techniques employed in phosphoproteomics. Amino Acids 43:1025–1047. https://doi.org/10.1007/s00726-011-1111-z

    Article  CAS  Google Scholar 

  13. Engholm-Keller K, Birck P, Størling J et al (2012) TiSH — a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC. J Proteome 75:5749–5761. https://doi.org/10.1016/j.jprot.2012.08.007

    Article  CAS  Google Scholar 

  14. Thingholm TE, Jensen ON, Robinson PJ, Larsen MR (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7:661–671. https://doi.org/10.1074/mcp.M700362-MCP200

    Article  PubMed  CAS  Google Scholar 

  15. Franck WL, Gokce E, Randall SM et al (2015) Phosphoproteome analysis links protein phosphorylation to cellular remodeling and metabolic adaptation during Magnaporthe oryzae appressorium development. J Proteome Res 14:2408–2424. https://doi.org/10.1021/pr501064q

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319. https://doi.org/10.1038/nprot.2016.136

    Article  PubMed  CAS  Google Scholar 

  17. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906. https://doi.org/10.1038/nprot.2007.261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support for this work was provided the National Science Foundation (MCB-0918611), the National Institute of Health Molecular Mycology and Pathogenesis Training program (5T32AI052080), and North Carolina State University to R.A.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph A. Dean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oh, Y., Franck, W.L., Dean, R.A. (2018). Sequential Phosphopeptide Enrichment for Phosphoproteome Analysis of Filamentous Fungi: A Test Case Using Magnaporthe oryzae. In: Ma, W., Wolpert, T. (eds) Plant Pathogenic Fungi and Oomycetes. Methods in Molecular Biology, vol 1848. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8724-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8724-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8723-8

  • Online ISBN: 978-1-4939-8724-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics