Skip to main content

Protocols for Investigating the Leaf Mycobiome Using High-Throughput DNA Sequencing

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1848))

Abstract

High-throughput sequencing of taxon-specific loci, or DNA metabarcoding, has become an invaluable tool for investigating the composition of plant-associated fungal communities and for elucidating plant–fungal interactions. While sequencing fungal communities has become routine, there remain numerous potential sources of systematic error that can introduce biases and compromise metabarcoding data. This chapter presents a protocol for DNA metabarcoding of the leaf mycobiome based on current best practices to minimize errors through careful laboratory practices and validation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N et al (2012) Ultra-hight-throughput microbial analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e27310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee CK, Herbold CW, Polson SW, Wommack KE, Williamson SJ, McDonald IR et al (2012) Groundtruthing next-gen sequencing for microbial ecology-biases and errors in community structure estimates from PCR amplicon pyrosequencing. PLoS One 7:e44224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R et al (2013) Fungal community analysis by high-throughput sequencing of amplified markers—a user’s guide. New Phytol 199:288–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kusar TA (2000) Are tropical endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  6. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  7. Herbold CW, Pelikan C, Kuzyk O, Hausmann B, Angel R, Berry D et al (2015) A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front Microbiol 6:1–8

    Article  Google Scholar 

  8. Harrison JG, Forister ML, Parchman TL, Kock GW (2016) Vertical stratification of the foliar fungal community in the world’s tallest trees. Am J Bot 103:2087–2095

    Article  PubMed  Google Scholar 

  9. Bahnweg G, Heller W, Stich S, Knappe C, Betz G, Heerdt C et al (2005) Beech leaf colonization by the endophyte Apiognomonia errabunda dramatically depends on light exposure and climatic conditions. Plant Biol 7:659–669

    Article  CAS  PubMed  Google Scholar 

  10. Rai M, Agarkar G (2016) Plant-fungal interactions: what triggers the fungi to switch among lifestyles? Crit Rev Microbiol 42:428–438

    Article  CAS  PubMed  Google Scholar 

  11. López-González RC, Gómez-Cornelio S, De la Rosa-García SC, Garrido E, Oropeza-Mariano O et al (2017) The age of lima bean leaves influences the richness and diversity of the endophytic fungal community, but not the antagonistic effect of endophytes against Colletotrichum lindemuthianum. Fungal Ecol 26:1–10

    Article  Google Scholar 

  12. Erickson RO, Michelini FJ (1957) The plastochron index. Am J Bot 44:297–305

    Article  Google Scholar 

  13. Meicenheimer RD (2014) The plastochron index: still useful after nearly six decades. Am J Bot 101:1821–1835

    Article  PubMed  Google Scholar 

  14. Greenfield M, Pareja R, Ortiz V, Gómez-Jiménez MI, Vega FE, Parsa S (2015) A novel method to scale up fungal endophyte isolations. Biocontrol Sci Tech 25(10):1208–1212

    Article  Google Scholar 

  15. Nguyen NH, Smith D, Peay K, Kennedy P (2015) Parsing ecological signal from noise in next generation amplicon sequencing. New Phytol 205:1289–1393

    Article  CAS  Google Scholar 

  16. Stevens JL, Jackson RL, Olson JB (2013) Slowing PCR ramp speed reduces chimera formation from environmental samples. J Microbiol Methods 93:203–205

    Article  CAS  PubMed  Google Scholar 

  17. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inferences from Illumina amplicon data. Nat Methods 13:581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anslan S, Bahram M, Hiiesalu I, Tedersoo L (2017) PipeCraft: flexible open-source toolkit for bioinformatics analysis of custom high-throughput amplicon sequencing data. Mol Ecol Resour 17(6):e234–e240. https://doi.org/10.1111/1755-0998.12692

    Article  PubMed  CAS  Google Scholar 

  20. Gweon HS, Oliver A, Taylor J, Booth T, Gibbs M, Read DS et al (2015) PIPITS: an automated pipeline for analysis of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol Evol 6:973–980

    Article  PubMed  PubMed Central  Google Scholar 

  21. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  Google Scholar 

  23. Schmidt TSB, Matias Rodrigues JF, von Mering C (2015) Limits to robustness and reproducibility in the demarcation of operational taxonomic units. Environ Microbiol 17:1689–1706

    Article  CAS  PubMed  Google Scholar 

  24. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA et al (2012) Nuclear ribosomal internal transcribed space (ITS) region as a universal DNA barcode marker for fungi. PNAS 109:6241–6246

    Article  PubMed  Google Scholar 

  25. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  26. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky J, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, London, pp 315–322

    Google Scholar 

  27. Smith DP, Peay KG (2014) Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS One 9(2):e90234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R et al (2014) Global diversity and geography of soil fungi. Science 346:1256688–1256688

    Article  CAS  PubMed  Google Scholar 

  29. Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One 7(7):e40863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J et al (2012) New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677

    Article  CAS  PubMed  Google Scholar 

  31. Taylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A, Caporaso JG et al (2016) Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. App Environ Microbiol 82:7217–7226

    Article  CAS  Google Scholar 

  32. Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL (2013) Practical innovations for high-throughput amplicon sequencing. Nat Methods 10:999–1002

    Article  CAS  PubMed  Google Scholar 

  33. Vestheim H, Jarman SN (2008) Blocking primers to enhance PCR amplification of rare sequences in mixed samples—a case study on prey DNA in Antarctic krill stomachs. Front Zool 5:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brown SP, Rigdon-Huss AR, Jumpponen A (2014) Analyses of ITS and LSU gene regions provide congruent results on fungal community responses. Fungal Ecol 9:65–68

    Article  Google Scholar 

  35. Halwachs B, Madhusudhan N, Krause R, Nilsson RH, Moissl-Eichinger C, Högenauer C et al (2017) Critical issues in mycobiota analysis. Front Microbiol 8:180. https://doi.org/10.3389/fmicb.2017.00180

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mueller RC, Gallegos LV, Kuske CR (2016) A new fungal large subunit ribosomal RNA primer for high-throughput sequencing surveys. FEMS Microbiol Ecol 92:fiv153

    Article  CAS  PubMed  Google Scholar 

  37. Amend AS, Martiny AC, Allison SD, Berlemont R, Goulden ML, Lu Y et al (2016) Microbial response to simulated global change is phylogenetically conserved and linked with functional potential. ISME J 10:109–118

    Article  CAS  PubMed  Google Scholar 

  38. Berriti A, Desirò A, Visentin S, Zecca O, Bonfante P (2017) ITS fungal barcoding primers vs 18S AMF-specific primers reveal similar AMF-based diversity patterns in roots and soils of three mountain systems. Environ Microbiol Rep 9(5):658–667. https://doi.org/10.1111/1758-2229.12574

    Article  CAS  Google Scholar 

  39. Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM, Kauserud H (2013) ITS1 versus ITS2 as DNA metabarcodes for fungi. Mol Ecol Resour 13:218–224

    Article  CAS  PubMed  Google Scholar 

  40. Bellemain E, Carlsen T, Brochmann C, Coissas E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779

    Article  CAS  PubMed  Google Scholar 

  42. Berry D, Mahfoudh KB, Wagner M, Loy A (2011) Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. App Environ Microbiol 77:7846–7849

    Article  CAS  Google Scholar 

  43. Toju H, Tanabe AS, Ishii HA (2016) Ericaceous plant-fungus network in a harsh alpine-subalpine environment. Mol Ecol 25:3242–3257

    Article  CAS  PubMed  Google Scholar 

  44. Oliver AK, Brown SP, Callaham MA Jr, Jumpponen A (2015) Polymerase matters: non-proofreading enzymes inflate fungal community richness estimates by up to 15%. Fungal Ecol 15:86–89

    Article  Google Scholar 

  45. Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, Gould TJ, Clayton JB, Johnson TJ, Hunter R, Knights D, Beckman KB (2016) Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol 34(9):942–952

    Article  CAS  PubMed  Google Scholar 

  46. Lahr DJG, Katz LA (2009) Reducing the impact of PCR-mediated recombination in molecular evolution and environmental studies using a new-generation high-fidelity DNA polymerase. BioTechniques 47:857–863

    Article  CAS  PubMed  Google Scholar 

  47. Aas AB, Davey ML, Kauserud H (2017) ITS all right mama: investigating the formation of chimeric sequences in the ITS2 region by DNA metabarcoding analysis of fungal mock communities in different complexities. Mol Ecol Resour 17:730–741

    Article  CAS  Google Scholar 

  48. Brown SP, Ferrer A, Dalling JW, Heath KD (2016) Don’t put all your eggs in one basket: a cost-effective and powerful method to optimize primer choice for rRNA environmental community analysis using the Fluidigm access array. Mol Ecol Resour 16:946–956

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Maggie Wagner, Edward Barge, Kyle Gervers, Thomas Wolpert, and Wenbo Ma for helpful feedback in the development of this protocol. This research was supported by the Department of Energy Feedstock Genomics Award 219086 (PEB) and the National Science Foundation Science Engineering and Education for Sustainability Award 1314095 (PEB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Posy E. Busby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brown, S.P., Leopold, D.R., Busby, P.E. (2018). Protocols for Investigating the Leaf Mycobiome Using High-Throughput DNA Sequencing. In: Ma, W., Wolpert, T. (eds) Plant Pathogenic Fungi and Oomycetes. Methods in Molecular Biology, vol 1848. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8724-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8724-5_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8723-8

  • Online ISBN: 978-1-4939-8724-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics