Skip to main content

Application of the Cre/lox System to Construct Auxotrophic Markers for Quantitative Genetic Analyses in Fusarium graminearum

  • Protocol
  • First Online:
Book cover Plant Pathogenic Fungi and Oomycetes

Abstract

The bacteriophage P1 Cre/lox system has been utilized in diverse fungi for marker recycling and exchange, generation of targeted chromosome translocations, and targeted deletion of interstitial chromosome segments. Here we show the application of this tool in the wheat and maize pathogen, Fusarium graminearum. We explored three different ways to introduce Cre into strains with floxed genes, namely transformation with an episomal or integrative plasmid (pLC28), fusion of protoplasts of strains carrying floxed genes with strains expressing Cre by forcing heterokaryons, and crosses between strains with floxed genes and strains expressing Cre to isolate progeny in which the target genes had been deleted during the cross. We used this system for the construction of strains bearing auxotrophic markers that were generated by gene replacement with positively selectable markers followed by Cre-mediated marker excision. In addition, updated protocols for transformation and crosses for F. graminearum are provided. In combination, strains and tools developed here add to the arsenal of methods that can be used to carry out molecular genetics with F. graminearum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7:2087–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85:5166–5170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ow DW (2002) Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol 48:183–200

    Article  CAS  PubMed  Google Scholar 

  4. Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yu Y, Bradley A (2001) Engineering chromosomal rearrangements in mice. Nat Rev Genet 2:780–790

    Article  CAS  PubMed  Google Scholar 

  6. van der Weyden L, Adams DJ, Bradley A (2002) Tools for targeted manipulation of the mouse genome. Physiol Genomics 11:133–164

    Article  CAS  PubMed  Google Scholar 

  7. Branda CS, Dymecki SM (2004) Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28

    Article  CAS  PubMed  Google Scholar 

  8. Sorrell DA, Kolb AF (2005) Targeted modification of mammalian genomes. Biotechnol Adv 23:431–469

    Article  CAS  PubMed  Google Scholar 

  9. Krappmann S, Bayram O, Braus GH (2005) Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryot Cell 4:1298–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Forment JV, Ramon D, MacCabe AP (2006) Consecutive gene deletions in Aspergillus nidulans: application of the Cre/loxP system. Curr Genet 50:217–224

    Article  CAS  PubMed  Google Scholar 

  11. Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59:499–509

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Rice PA (2003) New insight into site-specific recombination from Flp recombinase-DNA structures. Annu Rev Biophys Biomol Struct 32:135–159

    Article  CAS  PubMed  Google Scholar 

  13. Kopke K, Hoff B, Kuck U (2010) Application of the Saccharomyces cerevisiae FLP/FRT recombination system in filamentous fungi for marker recycling and construction of knockout strains devoid of heterologous genes. Appl Environ Microbiol 76:4664–4674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Turan S, Zehe C, Kuehle J, Qiao J, Bode J (2013) Recombinase-mediated cassette exchange (RMCE) – a rapidly-expanding toolbox for targeted genomic modifications. Gene 515:1–27

    Article  CAS  PubMed  Google Scholar 

  15. Carnoy C, Roten CA (2009) The dif/Xer recombination systems in proteobacteria. PLoS One 4:e6531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Missirlis PI, Smailus DE, Holt RA (2006) A high-throughput screen identifying sequence and promiscuity characteristics of the loxP spacer region in Cre-mediated recombination. BMC Genomics 7:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo F, Gopaul DN, Van Duyne GD (1999) Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. Proc Natl Acad Sci U S A 96:7143–7148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Van Duyne GD (2001) A structural view of cre-loxp site-specific recombination. Annu Rev Biophys Biomol Struct 30:87–104

    Article  PubMed  Google Scholar 

  19. Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62

    Article  CAS  PubMed  Google Scholar 

  20. Hirrlinger J, Scheller A, Hirrlinger PG, Kellert B, Tang W, Wehr MC, Goebbels S, Reichenbach A, Sprengel R, Rossner MJ, Kirchhoff F (2009) Split-cre complementation indicates coincident activity of different genes in vivo. PLoS One 4:e4286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659

    Article  CAS  PubMed  Google Scholar 

  22. Qin M, Bayley C, Stockton T, Ow DW (1994) Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc Natl Acad Sci U S A 91:1706–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Watson AT, Garcia V, Bone N, Carr AM, Armstrong J (2008) Gene tagging and gene replacement using recombinase-mediated cassette exchange in Schizosaccharomyces pombe. Gene 407:63–74

    Article  CAS  PubMed  Google Scholar 

  24. Dennison PM, Ramsdale M, Manson CL, Brown AJ (2005) Gene disruption in Candida albicans using a synthetic, codon-optimised Cre-loxP system. Fungal Genet Biol 42:737–748

    Article  CAS  PubMed  Google Scholar 

  25. Fickers P, Le Dall MT, Gaillardin C, Thonart P, Nicaud JM (2003) New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Methods 55:727–737

    Article  CAS  PubMed  Google Scholar 

  26. Baker LG, Lodge JK (2012) Multiple gene deletion in Cryptococcus neoformans using the Cre-lox system. Methods Mol Biol 845:85–98

    Article  CAS  PubMed  Google Scholar 

  27. Patel RD, Lodge JK, Baker LG (2010) Going green in Cryptococcus neoformans: the recycling of a selectable drug marker. Fungal Genet Biol 47:191–198

    Article  CAS  PubMed  Google Scholar 

  28. Florea S, Andreeva K, Machado C, Mirabito PM, Schardl CL (2009) Elimination of marker genes from transformed filamentous fungi by unselected transient transfection with a Cre-expressing plasmid. Fungal Genet Biol 46:721–730

    Article  CAS  PubMed  Google Scholar 

  29. Honda S, Selker EU (2009) Tools for fungal proteomics: multifunctional neurospora vectors for gene replacement, protein expression and protein purification. Genetics 182:11–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Steiger MG, Vitikainen M, Uskonen P, Brunner K, Adam G, Pakula T, Penttila M, Saloheimo M, Mach RL, Mach-Aigner AR (2011) Transformation system for Hypocrea jecorina (Trichoderma reesei) that favors homologous integration and employs reusable bidirectionally selectable markers. Appl Environ Microbiol 77:114–121

    Article  CAS  PubMed  Google Scholar 

  31. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  32. Trail F, Common R (2000) Perithecial development by Gibberella zeae: a light microscopy study. Mycologia 92:130–138

    Article  Google Scholar 

  33. Cuomo CA, Guldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma LJ, Baker SE, Rep M, Adam G, Antoniw J, Baldwin T, Calvo S, Chang YL, Decaprio D, Gale LR, Gnerre S, Goswami RS, Hammond-Kosack K, Harris LJ, Hilburn K, Kennell JC, Kroken S, Magnuson JK, Mannhaupt G, Mauceli E, Mewes HW, Mitterbauer R, Muehlbauer G, Munsterkotter M, Nelson D, O’Donnell K, Ouellet T, Qi W, Quesneville H, Roncero MI, Seong KY, Tetko IV, Urban M, Waalwijk C, Ward TJ, Yao J, Birren BW, Kistler HC (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–1402

    Article  CAS  PubMed  Google Scholar 

  34. Bowden RL, Leslie JF (1999) Sexual recombination in Gibberella zeae. Phytopathology 89:182–188

    Article  CAS  PubMed  Google Scholar 

  35. Lee J, Jurgenson JE, Leslie JF, Bowden RL (2008) Alignment of genetic and physical maps of Gibberella zeae. Appl Environ Microbiol 74:2349–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pomraning KR, Smith KM, Freitag M (2009) Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods 47:142–150

    Article  CAS  PubMed  Google Scholar 

  37. Kistler HC, Benny U (1992) Autonomously replicating plasmids and chromosome rearrangement during transformation of Nectria haematococca. Gene 117:81–89

    Article  CAS  PubMed  Google Scholar 

  38. Powell WA, Kistler HC (1990) In vivo rearrangement of foreign DNA by Fusarium oxysporum produces linear self-replicating plasmids. J Bacteriol 172:3163–3171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lorang JM, Tuori RP, Martinez JP, Sawyer TL, Redman RS, Rollins JA, Wolpert TJ, Johnson KB, Rodriguez RJ, Dickman MB, Ciuffetti LM (2001) Green fluorescent protein is lighting up fungal biology. Appl Environ Microbiol 67:1987–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Connolly LR, Smith KM, Freitag M (2013) The Fusarium graminearum histone H3 K27 methyltransferase KMT6 regulates development and expression of secondary metabolite gene clusters. PLoS Genet 9:e1003916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Riquelme M, Bredeweg EL, Callejas-Negrete O, Roberson RW, Ludwig S, Beltran-Aguilar A, Seiler S, Novick P, Freitag M (2014) The Neurospora crassa exocyst complex tethers Spitzenkorper vesicles to the apical plasma membrane during polarized growth. Mol Biol Cell 25:1312–1326

    Article  PubMed  PubMed Central  Google Scholar 

  42. Davis RH (2000) Neurospora: contributions of a model organism. Oxford University Press, Oxford

    Google Scholar 

  43. Cavinder B, Sikhakolli U, Fellows KM, Trail F (2012) Sexual development and ascospore discharge in Fusarium graminearum. J Vis Exp 61:3895

    Google Scholar 

  44. Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CAMJJ (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56:117–124

    Article  CAS  PubMed  Google Scholar 

  45. Webster TD, Dickson RC (1983) Direct selection of Saccharomyces cerevisiae resistant to the antibiotic G418 following transformation with a DNA vector carrying the kanamycin-resistance gene of Tn903. Gene 26:243–252

    Article  CAS  PubMed  Google Scholar 

  46. Yoruk E, Albayrak G (2015) Geneticin (G418) resistance and electroporation-mediated transformation of Fusarium graminearum and F. culmorum. Biotechnol Biotechnol Equip 29:268–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoff B, Kamerewerd J, Sigl C, Zadra I, Kuck U (2010) Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain DeltaPcku70 shows up-regulation of genes from the HOG pathway. Appl Microbiol Biotechnol 85:1081–1094

    Article  CAS  PubMed  Google Scholar 

  48. Anne J, Peberdy JF (1976) Induced fusion of fungal protoplasts following treatment with polyethylene glycol. J Gen Microbiol 92:413–417

    Article  CAS  PubMed  Google Scholar 

  49. Studt L, Rosler SM, Burkhardt I, Arndt B, Freitag M, Humpf HU, Dickschat JS, Tudzynski B (2016) Knock-down of the methyltransferase Kmt6 relieves H3K27me3 and results in induction of cryptic and otherwise silent secondary metabolite gene clusters in Fusarium fujikuroi. Environ Microbiol 18:4037–4054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leslie JF, Summerell BA (2006) The Fusarium laboratory manual, 1st edn. Blackwell Pub., Ames, IA

    Book  Google Scholar 

  51. Klittich C, Leslie JF (1988) Nitrate reduction mutants of Fusarium moniliforme (Gibberella fujikuroi). Genetics 118:417–423

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Lee J, Lee T, Lee YW, Yun SH, Turgeon BG (2003) Shifting fungal reproductive mode by manipulation of mating type genes: obligatory heterothallism of Gibberella zeae. Mol Microbiol 50:145–152

    Article  CAS  PubMed  Google Scholar 

  53. Leslie JF (1983) Some genetic techniques for Gibberella zeae. Phytopathology 73:1005–1008

    Article  Google Scholar 

  54. O’Donnell K, Rooney AP, Proctor RH, Brown DW, McCormick SP, Ward TJ, Frandsen RJ, Lysoe E, Rehner SA, Aoki T, Robert VA, Crous PW, Groenewald JZ, Kang S, Geiser DM (2013) Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet Biol 52:20–31

    Article  CAS  PubMed  Google Scholar 

  55. Lofgren LA, LeBlanc NR, Certano AK, Nachtigall J, LaBine KM, Riddle J, Broz K, Dong Y, Bethan B, Kafer CW, Kistler HC (2017) Fusarium graminearum: pathogen or endophyte of North American grasses? New Phytol 217:1203–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ma LJ, Geiser DM, Proctor RH, Rooney AP, O’Donnell K, Trail F, Gardiner DM, Manners JM, Kazan K (2013) Fusarium pathogenomics. Annu Rev Microbiol 67:399–416

    Article  CAS  PubMed  Google Scholar 

  57. Brown DW, Proctor RH (2016) Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium. Fungal Genet Biol 89:37–51

    Article  CAS  PubMed  Google Scholar 

  58. Trail F, Wang Z, Stefanko K, Cubba C, Townsend JP (2017) The ancestral levels of transcription and the evolution of sexual phenotypes in filamentous fungi. PLoS Genet 13:e1006867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen Y, Zhou MG (2009) Sexual recombination of carbendazim resistance in Fusarium graminearum under field conditions. Pest Manag Sci 65:398–403

    Article  CAS  PubMed  Google Scholar 

  60. Kim HK, Cho EJ, Lee S, Lee YS, Yun SH (2012) Functional analyses of individual mating-type transcripts at MAT loci in Fusarium graminearum and Fusarium asiaticum. FEMS Microbiol Lett 337:89–96

    Article  CAS  PubMed  Google Scholar 

  61. Zheng Q, Hou R, Juanyu Z, Ma J, Wu Z, Wang G, Wang C, Xu JR (2013) The MAT locus genes play different roles in sexual reproduction and pathogenesis in Fusarium graminearum. PLoS One 8:e66980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Beremand MN, Van Middlesworth F, Taylor S, Plattner RD, Weisleder D (1988) Leucine auxotrophy specifically alters the pattern of trichothecene production in a T-2 toxin-producing strain of Fusarium sporotrichioides. Appl Environ Microbiol 54:2759–2766

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Namiki F, Matsunaga M, Okuda M, Inoue I, Nishi K, Fujita Y, Tsuge T (2001) Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol Plant Microbe Interact 14:580–584

    Article  CAS  PubMed  Google Scholar 

  64. Shimshek DR, Kim J, Hubner MR, Spergel DJ, Buchholz F, Casanova E, Stewart AF, Seeburg PH, Sprengel R (2002) Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis 32:19–26

    Article  CAS  PubMed  Google Scholar 

  65. Case ME, Schweizer M, Kushner SR, Giles NH (1979) Efficient transformation of Neurospora crassa utilizing hybrid plasmid DNA. Proc Natl Acad Sci U S A 76:5259–5263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hohn TM, Desjardins AE (1992) Isolation and gene disruption of the Tox5 gene encoding trichodiene synthase in Gibberella pulicaris. Mol Plant Microbe Interact 5:249–256

    Article  CAS  PubMed  Google Scholar 

  67. Osiewacz HD, Skaletz A, Esser K (1991) Integrative transformation of the ascomycete Podospora anserina: identification of the mating-type locus on chromosome VII of electrophoretically separated chromosomes. Appl Microbiol Biotechnol 35:38–45

    Article  CAS  PubMed  Google Scholar 

  68. Maier FJ, Malz S, Losch AP, Lacour T, Schafer W (2005) Development of a highly efficient gene targeting system for Fusarium graminearum using the disruption of a polyketide synthase gene as a visible marker. FEMS Yeast Res 5:653–662

    Article  CAS  PubMed  Google Scholar 

  69. Moradi S, Sanjarian F, Safaie N, Mousavi A, Khaniki GRB (2013) A modified method for transformation of Fusarium graminearum. J Crop Prot 2:297–304

    Google Scholar 

  70. Watson RJ, Burchat S, Bosley J (2008) A model for integration of DNA into the genome during transformation of Fusarium graminearum. Fungal Genet Biol 45:1348–1363

    Article  CAS  PubMed  Google Scholar 

  71. Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 101:12248–12253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:1557–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Freitag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Connolly, L.R. et al. (2018). Application of the Cre/lox System to Construct Auxotrophic Markers for Quantitative Genetic Analyses in Fusarium graminearum. In: Ma, W., Wolpert, T. (eds) Plant Pathogenic Fungi and Oomycetes. Methods in Molecular Biology, vol 1848. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8724-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8724-5_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8723-8

  • Online ISBN: 978-1-4939-8724-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics