Skip to main content

Correlative Fluorescence and Scanning Electron Microscopy to Study Lymphovenous Valve Development

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1846))

Abstract

Lymph collected from throughout the body is exclusively returned to blood circulation via two pairs of bilaterally located lymphovenous valves. Lymphovenous valves share numerous similarities with lymphatic and venous valves and are defective in multiple mouse models of lymphedema or lymphatic dysfunction. Here we describe a protocol that combines the strengths of fluorescence microscopy and scanning electron microscopy to precisely locate and analyze the topography of developing lymphovenous valves at high resolution.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476. https://doi.org/10.1016/j.cell.2010.01.045

    Article  CAS  Google Scholar 

  2. Geng X, Cha B, Mahamud MR, Lim KC, Silasi-Mansat R, Uddin MK, Miura N, Xia L, Simon AM, Engel JD, Chen H, Lupu F, Srinivasan RS (2016) Multiple mouse models of primary lymphedema exhibit distinct defects in lymphovenous valve development. Dev Biol 409(1):218–233. https://doi.org/10.1016/j.ydbio.2015.10.022

    Article  CAS  PubMed  Google Scholar 

  3. Srinivasan RS, Oliver G (2011) Prox1 dosage controls the number of lymphatic endothelial cell progenitors and the formation of the lymphovenous valves. Genes Dev 25(20):2187–2197. https://doi.org/10.1101/gad.16974811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hess PR, Rawnsley DR, Jakus Z, Yang Y, Sweet DT, Fu J, Herzog B, Lu M, Nieswandt B, Oliver G, Makinen T, Xia L, Kahn ML (2014) Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. J Clin Invest 124(1):273–284. https://doi.org/10.1172/JCI70422

    Article  CAS  PubMed  Google Scholar 

  5. Kazenwadel J, Betterman KL, Chong CE, Stokes PH, Lee YK, Secker GA, Agalarov Y, Demir CS, Lawrence DM, Sutton DL, Tabruyn SP, Miura N, Salminen M, Petrova TV, Matthews JM, Hahn CN, Scott HS, Harvey NL (2015) GATA2 is required for lymphatic vessel valve development and maintenance. J Clin Invest 125(8):2979–2994. https://doi.org/10.1172/JCI78888

    Article  PubMed  PubMed Central  Google Scholar 

  6. Martin-Almedina S, Martinez-Corral I, Holdhus R, Vicente A, Fotiou E, Lin S, Petersen K, Simpson MA, Hoischen A, Gilissen C, Jeffery H, Atton G, Karapouliou C, Brice G, Gordon K, Wiseman JW, Wedin M, Rockson SG, Jeffery S, Mortimer PS, Snyder MP, Berland S, Mansour S, Makinen T, Ostergaard P (2016) EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. J Clin Invest 126(8):3080–3088. https://doi.org/10.1172/JCI85794

    Article  PubMed  PubMed Central  Google Scholar 

  7. Geng X, Cha B, Mahamud MR, Srinivasan RS (2017) Intraluminal valves: development, function and disease. Dis Model Mech 10(11):1273–1287. https://doi.org/10.1242/dmm.030825

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961):917–925. https://doi.org/10.1038/nature02033

    Article  CAS  Google Scholar 

  9. Yang Y, Garcia-Verdugo JM, Soriano-Navarro M, Srinivasan RS, Scallan JP, Singh MK, Epstein JA, Oliver G (2012) Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood 120(11):2340–2348. https://doi.org/10.1182/blood-2012-05-428607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH/NHLBI (R01HL131652 and R01HL133216 to RSS), Oklahoma Center for Adult Stem Cell Research (4340) to RSS, NIH/NIGMS COBRE (P20 GM103441 to XG; PI: Dr. Rodger McEver) and American Heart Association (15BGIA25710032 for RSS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sathish Srinivasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Geng, X., Srinivasan, R.S. (2018). Correlative Fluorescence and Scanning Electron Microscopy to Study Lymphovenous Valve Development. In: Oliver, G., Kahn, M. (eds) Lymphangiogenesis. Methods in Molecular Biology, vol 1846. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8712-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8712-2_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8711-5

  • Online ISBN: 978-1-4939-8712-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics