Skip to main content

Evaluation and Characterization of Endothelial Cell Invasion and Sprouting Behavior

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1846))

Abstract

Here, we describe highly reproducible methods to investigate human EC invasion and sprouting behavior in 3D collagen matrices. Two assay models are presented whereby ECs are induced to sprout from a monolayer surface or from aggregated ECs suspended within a collagen gel matrix. In each case, the assays are performed using serum-free defined media containing a combination of five growth factors (Factors): FGF-2, SCF, IL-3, SDF-1α, and insulin. In both models, marked EC sprouting occurs with leading EC tip cells over a 12–24 h period. To illustrate their utility, we present data showing the influence of various pharmacologic inhibitors directed to membrane-type matrix metalloproteinases (MT-MMPs), protein kinase C alpha (PKCα), Src family kinases, and Notch-dependent signaling. Marked inhibition of sprouting is observed after blockade of MT-MMPs and PKCα, while strong increases in sprouting and EC tip cell number is observed following blockade of Src kinases, Notch signaling or both. Interestingly, the increased sprouting behavior observed following Src or Notch blockade directly correlates with a loss in the ability of ECs to form lumens. These defined in vitro assay models allow for a genetic and signaling dissection of EC tip cells vs. lumen forming ECs, which are both necessary for the formation of branching networks of tubes during vascular morphogenic events.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Davis GE, Stratman AN, Sacharidou A, Koh W (2011) Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int Rev Cell Mol Biol 288:101–165. https://doi.org/10.1016/B978-0-12-386041-5.00003-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bowers SL, Norden PR, Davis GE (2016) Molecular signaling pathways controlling vascular tube morphogenesis and pericyte-induced tube maturation in 3D extracellular matrices. Adv Pharmacol 77:241–280. https://doi.org/10.1016/bs.apha.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  3. Koh W, Stratman AN, Sacharidou A, Davis GE (2008) In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol 443:83–101

    Article  CAS  PubMed  Google Scholar 

  4. Nakatsu MN, Hughes CC (2008) An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol 443:65–82

    Article  CAS  PubMed  Google Scholar 

  5. Aplin AC, Fogel E, Zorzi P, Nicosia RF (2008) The aortic ring model of angiogenesis. Methods Enzymol 443:119–136

    Article  CAS  PubMed  Google Scholar 

  6. Iruela-Arispe ML, Davis GE (2009) Cellular and molecular mechanisms of vascular lumen formation. Dev Cell 16(2):222–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Davis GE, Norden PR, Bowers SL (2015) Molecular control of capillary morphogenesis and maturation by recognition and remodeling of the extracellular matrix: functional roles of endothelial cells and pericytes in health and disease. Connect Tissue Res 56(5):392–402. https://doi.org/10.3109/03008207.2015.1066781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sacharidou A, Stratman AN, Davis GE (2012) Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices. Cells Tissues Organs 195(1-2):122–143. https://doi.org/10.1159/000331410

    Article  CAS  PubMed  Google Scholar 

  9. Stratman AN, Davis MJ, Davis GE (2011) VEGF and FGF prime vascular tube morphogenesis and sprouting directed by hematopoietic stem cell cytokines. Blood 117(14):3709–3719. https://doi.org/10.1182/blood-2010-11-316752

    Article  PubMed  PubMed Central  Google Scholar 

  10. Smith AO, Bowers SL, Stratman AN, Davis GE (2013) Hematopoietic stem cell cytokines and fibroblast growth factor-2 stimulate human endothelial cell-pericyte tube co-assembly in 3D fibrin matrices under serum-free defined conditions. PLoS One 8(12):e85147. https://doi.org/10.1371/journal.pone.0085147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114(24):5091–5101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stratman AN, Schwindt AE, Malotte KM, Davis GE (2010) Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood 116(22):4720–4730. https://doi.org/10.1182/blood-2010-05-286872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stratman AN, Davis GE (2012) Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microsc Microanal 18(1):68–80. https://doi.org/10.1017/S1431927611012402

    Article  CAS  PubMed  Google Scholar 

  14. Davis GE, Kim DJ, Meng CX, Norden PR, Speichinger KR, Davis MT, Smith AO, Bowers SL, Stratman AN (2013) Control of vascular tube morphogenesis and maturation in 3D extracellular matrices by endothelial cells and pericytes. Methods Mol Biol 1066:17–28. https://doi.org/10.1007/978-1-62703-604-7_2

    Article  CAS  PubMed  Google Scholar 

  15. Kim DJ, Norden PR, Salvador J, Barry DM, Bowers SLK, Cleaver O, Davis GE (2017) Src- and Fyn-dependent apical membrane trafficking events control endothelial lumen formation during vascular tube morphogenesis. PLoS One 12(9):e0184461. https://doi.org/10.1371/journal.pone.0184461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sainson RC, Aoto J, Nakatsu MN, Holderfield M, Conn E, Koller E, Hughes CC (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 19(8):1027–1029

    Article  CAS  PubMed  Google Scholar 

  17. Holderfield MT, Hughes CC (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res 102(6):637–652

    Article  CAS  PubMed  Google Scholar 

  18. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478

    Article  CAS  PubMed  Google Scholar 

  19. Stratman AN, Saunders WB, Sacharidou A, Koh W, Fisher KE, Zawieja DC, Davis MJ, Davis GE (2009) Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood 114(2):237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants HL126518, HL128584, and HL136139 to G.E. Davis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Salvador, J., Davis, G.E. (2018). Evaluation and Characterization of Endothelial Cell Invasion and Sprouting Behavior. In: Oliver, G., Kahn, M. (eds) Lymphangiogenesis. Methods in Molecular Biology, vol 1846. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8712-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8712-2_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8711-5

  • Online ISBN: 978-1-4939-8712-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics