Skip to main content

Exploring the Role of Tertiary Lymphoid Structures Using a Mouse Model of Bacteria-Infected Lungs

  • Protocol
  • First Online:
Tertiary Lymphoid Structures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1845))

Abstract

Animal models can be helpful tools for deciphering the generation, maintenance, and role of tertiary lymphoid structures (TLS) during infections or tumor development. We describe here the establishment of a persistent lung infection in immune-competent mice by intratracheal instillation of agarose beads containing Pseudomonas aeruginosa or Staphylococcus aureus bacteria. After instillation, animals develop a chronic pulmonary infection, marked by the presence of TLS. This experimental setting allows the study of the function of TLS induced by bacteria encountered in patients with cystic fibrosis (CF) as P. aeruginosa and S. aureus are the two main bacterial strains that infect bronchi of adult CF patients. Additionally, we describe also how to manipulate the immune response in these infected animals by targeting immune cells involved in TLS function. Overall, this approach makes it possible to explore the role of chronic inflammation in the induction and maintenance of TLS in infected tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bienenstock J, Johnston N, Perey DY (1973) Bronchial lymphoid tissue. I. Morphologic characteristics. Lab Investig 28:686–692

    PubMed  CAS  Google Scholar 

  2. Bienenstock J, Johnston N, Perey DY (1973) Bronchial lymphoid tissue. II. Functional characteristics. Lab Invest 28:693–698

    PubMed  CAS  Google Scholar 

  3. Pabst R, Gehrke I (1990) Is the bronchus-associated lymphoid tissue (BALT) an integral structure of the lung in normal mammals, including humans? Am J Respir Cell Mol Biol 3:131–135. https://doi.org/10.1165/ajrcmb/3.2.131

    Article  PubMed  CAS  Google Scholar 

  4. Ruddle NH (1999) Lymphoid neo-organogenesis: lympho-toxin’s role in inflammation and development. Immunol Res 19:119–125. https://doi.org/10.1007/BF02786481

    Article  PubMed  CAS  Google Scholar 

  5. Hogg JC, Chu F, Utokaparch S et al (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350:2645–2653. https://doi.org/10.1056/NEJMoa032158

    Article  PubMed  CAS  Google Scholar 

  6. Perros F, Dorfmüller P, Montani D et al (2012) Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 185:311–321. https://doi.org/10.1164/rccm.201105-0927OC

    Article  PubMed  Google Scholar 

  7. Marchal-Sommé J, Uzunhan Y, Marchand-Adam S et al (2006) Cutting edge: non-proliferating mature immune cells form a novel type of organized lymphoid structure in idiopathic pulmonary fibrosis. J Immunol 176:5735–5739. https://doi.org/10.4049/jimmunol.176.10.5735

    Article  PubMed  Google Scholar 

  8. Elliot JG, Jensen CM, Mutavdzic S et al (2004) Aggregation of lymphoid cells in the airways of nonsmokers, smokers and subjects with asthma. Am J Respir Crit Care Med 169:712–718. https://doi.org/10.1164/rccm.200308-1167C

    Article  PubMed  Google Scholar 

  9. Rangel-Moreno J, Harton L, Navarro C et al (2006) Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. J Clin Invest 116:3183–3194. https://doi.org/10.1172/JCI28756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Dieu-Nosjean MC, Antoine M, Danel C et al (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26:4410–4417. https://doi.org/10.1200/JCO.2007.15.0284

    Article  PubMed  CAS  Google Scholar 

  11. Sautès-Fridman C, Lawand M, Giraldo NA et al (2016) Tertiary lymphoid structures in cancers: prognostic value, regulation, and manipulation for therapeutic intervention. Front Immunol 7:407. https://doi.org/10.3389/fimmu.2016.00407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Frija-Masson J, Martin C, Regard L et al (2017) Bacteria-driven peribronchial lymphoid neogenesis in bronchiectasis and cystic fibrosis. Eur Respir J 49(4). pii: 1601873. https://doi.org/10.1183/13993003.01873-2016

  13. Vaincre la Mucoviscidose, INED. French cystic fibrosis registry. Annual data report 2015. http://www.vaincrelamuco.org/sites/default/files/french_cf_patient_registry_2015.pdf

  14. Cystic Fibrosis Foundation 2016-Patient Registry-Annual data report. https://www.cff.org/Research/Researcher-Resources/Patient-Registry/2016-Patient-Registry-Reports/

  15. Foo SY, Phipps S (2010) Regulation of inducible BALT formation and contribution to immunity and pathology. Mucosal Immunol 3:537–544. https://doi.org/10.1038/mi.2010.52

    Article  PubMed  CAS  Google Scholar 

  16. Crother TR, Ma J, Jupelli M et al (2012) Plasmacytoid dendritic cells play a role for effective innate immune responses during chlamydia pneumoniae infection in mice. PLoS One 7(10):e48655. https://doi.org/10.1371/journal.pone.0048655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Finkin S, Yuan D, Stein I et al (2015) Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol 16:1235–1244. https://doi.org/10.1038/ni.3290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Joshi NS, Akama-Garren EH, Lu Y et al (2015) Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity 43:579–590. https://doi.org/10.1016/j.immuni.2015.08.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Martin C, Thevenot G, Danel S et al (2011) Pseudomonas aeruginosa induces vascularendothelial growth factor synthesis in airway epithelium in vitro and in vivo. Eur Resp J 38:939–946. https://doi.org/10.1183/09031936.00134910

    Article  CAS  Google Scholar 

  20. Ius F, Sommer W, Tudorache I et al (2015) Preemptive treatment with therapeutic plasma exchange and rituximab for early donor-specific antibodies after lung transplantation. J Heart Lung Transplant 34:50–58. https://doi.org/10.1016/j.healun.2014.09.019

    Article  PubMed  Google Scholar 

  21. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) Guide for the care and use of laboratory animals, 8th ed. National Academies Press (US), Washington (DC). https://doi.org/10.17226/12910

  22. The European Parliament and the Council of the European Union. 2010. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Off J Eur Communities L276:33–79

    Google Scholar 

  23. Nicklas W, Baneux P, Boot R et al (2002) Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units. Lab Anim 36:20–42. https://doi.org/10.1258/0023677021911740

    Article  PubMed  CAS  Google Scholar 

  24. Van Heeckeren AM, Schluchter MD (2002) Murine models of chronic Pseudomonas aeruginosa lung infection. Lab Anim 36:291–312. https://doi.org/10.1258/002367702320162405

    Article  PubMed  Google Scholar 

  25. Das S, MacDonald K, Chang HY, Mitzner W (2013) A simple method of mouse lung intubation. J Vis Exp 73:e50318. https://doi.org/10.3791/50318

    Article  Google Scholar 

  26. Hsia CC, Hyde DM, Ochs M, Weibel ER, ATS/ERS Joint Task Force on Quantitative Assessment of Lung Structure (2010) An Official Research Policy Statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med 181:394–418. https://doi.org/10.1164/rccm.200809-1522ST

    Article  PubMed  PubMed Central  Google Scholar 

  27. Palavecino EL (2014) Clinical, epidemiologic, and laboratory aspects of methicillin-resistant Staphylococcus aureus infections. Methods Mol Biol 1085:1–24. https://doi.org/10.1007/978-1-62703-664-1_1

    Article  PubMed  CAS  Google Scholar 

  28. Goerke C, Wolz C (2010) Adaptation of Staphylococcus aureus to the cystic fibrosis lung. Int J Med Microbiol 300:520–525. https://doi.org/10.1016/j.ijmm.2010.08.003

    Article  PubMed  Google Scholar 

  29. Teichgräber V, Ulrich M, Endlich N et al (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14:382–391

    Article  CAS  PubMed  Google Scholar 

  30. Morissette C, Skamene E, Gervais F (1995) Endobronchial inflammation following Pseudomonas aeruginosa infection in resistant and susceptible strains of mice. Infect Immun 63:1718–1724

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant from Association Vaincre la Mucoviscidose (RF201605016 22/1/2/51), by INSERM, and by Paris Descartes and Sorbonne Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Teillaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Teillaud, JL., Regard, L., Martin, C., Sibéril, S., Burgel, PR. (2018). Exploring the Role of Tertiary Lymphoid Structures Using a Mouse Model of Bacteria-Infected Lungs. In: Dieu-Nosjean, MC. (eds) Tertiary Lymphoid Structures. Methods in Molecular Biology, vol 1845. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8709-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8709-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8708-5

  • Online ISBN: 978-1-4939-8709-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics