Skip to main content

Tertiary Lymphoid Structures Among the World of Noncanonical Ectopic Lymphoid Organizations

  • Protocol
  • First Online:
Tertiary Lymphoid Structures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1845))

Abstract

Tertiary lymphoid structures (TLOs), also known as ectopic lymphoid structures, are associated with chronic infections and inflammatory diseases. Despite their association with pathology, these structures are actually a normal, albeit transient, component of the immune system and facilitate local immune responses that are meant to mitigate inflammation and resolve infection. Many of the mechanisms controlling the formation and function of tertiary lymphoid structures have been identified, in part by experimentally triggering their formation using defined stimuli under controlled conditions. Here, we introduce the experimental and pathological conditions in which tertiary lymphoid tissues are formed, describe the mechanisms linked to their formation, and discuss their functions in the context of both infection and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cyster JG (2010) B cell follicles and antigen encounters of the third kind. Nat Immunol 11(11):989–996. https://doi.org/10.1038/ni.1946

    Article  PubMed  CAS  Google Scholar 

  2. Drayton DL, Liao S, Mounzer RH, Ruddle NH (2006) Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol 7(4):344–353. https://doi.org/10.1038/ni1330

    Article  PubMed  CAS  Google Scholar 

  3. Dieu-Nosjean MC, Goc J, Giraldo NA et al (2014) Tertiary lymphoid structures in cancer and beyond. Trends Immunol 35(11):571–580. https://doi.org/10.1016/j.it.2014.09.006

    Article  PubMed  CAS  Google Scholar 

  4. Jones GW, Jones SA (2016) Ectopic lymphoid follicles: inducible centres for generating antigen-specific immune responses within tissues. Immunology 147(2):141–151. https://doi.org/10.1111/imm.12554

    Article  PubMed  CAS  Google Scholar 

  5. Randall TD, Mebius RE (2014) The development and function of mucosal lymphoid tissues: a balancing act with micro-organisms. Mucosal Immunol 7(3):455–466. https://doi.org/10.1038/mi.2014.11

    Article  PubMed  CAS  Google Scholar 

  6. van de Pavert SA, Mebius RE (2010) New insights into the development of lymphoid tissues. Nat Rev Immunol 10(9):664–674. https://doi.org/10.1038/nri2832

    Article  PubMed  CAS  Google Scholar 

  7. Yin C, Mohanta S, Maffia P, Habenicht AJ (2017) Editorial: tertiary lymphoid organs (TLOs): powerhouses of disease immunity. Front Immunol 8:228. https://doi.org/10.3389/fimmu.2017.00228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Carragher DM, Rangel-Moreno J, Randall TD (2008) Ectopic lymphoid tissues and local immunity. Semin Immunol 20(1):26–42. https://doi.org/10.1016/j.smim.2007.12.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Cruz-Migoni S, Caamano J (2016) Fat-associated lymphoid clusters in inflammation and immunity. Front Immunol 7:612. https://doi.org/10.3389/fimmu.2016.00612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Jones GW, Bombardieri M, Greenhill CJ et al (2015) Interleukin-27 inhibits ectopic lymphoid-like structure development in early inflammatory arthritis. J Exp Med 212(11):1793–1802. https://doi.org/10.1084/jem.20132307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Stahl FR, Heller K, Halle S et al (2013) Nodular inflammatory foci are sites of T cell priming and control of murine cytomegalovirus infection in the neonatal lung. PLoS Pathog 9(12):e1003828. https://doi.org/10.1371/journal.ppat.1003828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pitzalis C, Jones GW, Bombardieri M, Jones SA (2014) Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat Rev Immunol 14(7):447–462. https://doi.org/10.1038/nri3700

    Article  PubMed  CAS  Google Scholar 

  13. Moyron-Quiroz JE, Rangel-Moreno J, Kusser K et al (2004) Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med 10(9):927–934. https://doi.org/10.1038/nm1091

    Article  PubMed  CAS  Google Scholar 

  14. van de Pavert SA, Olivier BJ, Goverse G et al (2009) Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat Immunol 10(11):1193–1199. https://doi.org/10.1038/ni.1789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Rangel-Moreno J, Carragher DM, de la Luz Garcia-Hernandez M et al (2011) The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat Immunol 12(7):639–646. https://doi.org/10.1038/ni.2053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lochner M, Ohnmacht C, Presley L et al (2011) Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORgamma t and LTi cells. J Exp Med 208(1):125–134. https://doi.org/10.1084/jem.20100052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cherrier M, Sawa S, Eberl G (2012) Notch, Id2, and RORgammat sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J Exp Med 209(4):729–740. https://doi.org/10.1084/jem.20111594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kuroda E, Ozasa K, Temizoz B et al (2016) Inhaled fine particles induce alveolar macrophage death and interleukin-1alpha release to promote inducible bronchus-associated lymphoid tissue formation. Immunity 45(6):1299–1310. https://doi.org/10.1016/j.immuni.2016.11.010

    Article  PubMed  CAS  Google Scholar 

  19. Goya S, Matsuoka H, Mori M et al (2003) Sustained interleukin-6 signalling leads to the development of lymphoid organ-like structures in the lung. J Pathol 200(1):82–87. https://doi.org/10.1002/path.1321

    Article  PubMed  CAS  Google Scholar 

  20. Barone F, Nayar S, Campos J et al (2015) IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs. Proc Natl Acad Sci U S A 112(35):11,024–11,029. https://doi.org/10.1073/pnas.1503315112

    Article  CAS  Google Scholar 

  21. Wengner AM, Hopken UE, Petrow PK et al (2007) CXCR5- and CCR7-dependent lymphoid neogenesis in a murine model of chronic antigen-induced arthritis. Arthritis Rheum 56(10):3271–3283. https://doi.org/10.1002/art.22939

    Article  PubMed  CAS  Google Scholar 

  22. Thurlings RM, Wijbrandts CA, Mebius RE et al (2008) Synovial lymphoid neogenesis does not define a specific clinical rheumatoid arthritis phenotype. Arthritis Rheum 58(6):1582–1589. https://doi.org/10.1002/art.23505

    Article  PubMed  Google Scholar 

  23. Takemura S, Braun A, Crowson C et al (2001) Lymphoid neogenesis in rheumatoid synovitis. J Immunol 167(2):1072–1080

    Article  CAS  Google Scholar 

  24. Shi K, Hayashida K, Kaneko M et al (2001) Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients. J Immunol 166(1):650–655

    Article  CAS  PubMed  Google Scholar 

  25. Humby F, Bombardieri M, Manzo A et al (2009) Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med 6(1):e1. https://doi.org/10.1371/journal.pmed.0060001

    Article  PubMed  PubMed Central  Google Scholar 

  26. Holdgate N, St Clair EW (2016) Recent advances in primary Sjogren's syndrome. F1000Res 5. https://doi.org/10.12688/f1000research.8352.1

  27. Fava RA, Kennedy SM, Wood SG et al (2011) Lymphotoxin-beta receptor blockade reduces CXCL13 in lacrimal glands and improves corneal integrity in the NOD model of Sjogren's syndrome. Arthritis Res Ther 13(6):R182. https://doi.org/10.1186/ar3507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bombardieri M, Barone F, Lucchesi D et al (2012) Inducible tertiary lymphoid structures, autoimmunity, and exocrine dysfunction in a novel model of salivary gland inflammation in C57BL/6 mice. J Immunol 189(7):3767–3776. https://doi.org/10.4049/jimmunol.1201216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Serafini B, Rosicarelli B, Magliozzi R et al (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14(2):164–174

    Article  PubMed  Google Scholar 

  30. Pikor NB, Prat A, Bar-Or A, Gommerman JL (2015) Meningeal tertiary lymphoid tissues and multiple sclerosis: a gathering place for diverse types of immune cells during CNS autoimmunity. Front Immunol 6:657. https://doi.org/10.3389/fimmu.2015.00657

    Article  PubMed  CAS  Google Scholar 

  31. Pikor NB, Astarita JL, Summers-Deluca L et al (2015) Integration of Th17- and lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate neuroinflammation. Immunity 43(6):1160–1173. https://doi.org/10.1016/j.immuni.2015.11.010

    Article  PubMed  CAS  Google Scholar 

  32. Peters A, Pitcher LA, Sullivan JM et al (2011) Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 35(6):986–996. https://doi.org/10.1016/j.immuni.2011.10.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mitsdoerffer M, Peters A (2016) Tertiary lymphoid organs in central nervous system autoimmunity. Front Immunol 7:451. https://doi.org/10.3389/fimmu.2016.00451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Magliozzi R, Columba-Cabezas S, Serafini B, Aloisi F (2004) Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 148(1-2):11–23. https://doi.org/10.1016/j.jneuroim.2003.10.056

    Article  PubMed  CAS  Google Scholar 

  35. Columba-Cabezas S, Griguoli M, Rosicarelli B et al (2006) Suppression of established experimental autoimmune encephalomyelitis and formation of meningeal lymphoid follicles by lymphotoxin beta receptor-Ig fusion protein. J Neuroimmunol 179(1-2):76–86. https://doi.org/10.1016/j.jneuroim.2006.06.015

    Article  PubMed  CAS  Google Scholar 

  36. Hsieh C, Chang A, Brandt D et al (2011) Predicting outcomes of lupus nephritis with tubulointerstitial inflammation and scarring. Arthritis Care Res (Hoboken) 63(6):865–874. https://doi.org/10.1002/acr.20441

    Article  Google Scholar 

  37. Ludewig B, Odermatt B, Landmann S et al (1998) Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J Exp Med 188(8):1493–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Henry RA, Kendall PL (2010) CXCL13 blockade disrupts B lymphocyte organization in tertiary lymphoid structures without altering B cell receptor bias or preventing diabetes in nonobese diabetic mice. J Immunol 185(3):1460–1465. https://doi.org/10.4049/jimmunol.0903710

    Article  PubMed  CAS  Google Scholar 

  39. Astorri E, Bombardieri M, Gabba S et al (2010) Evolution of ectopic lymphoid neogenesis and in situ autoantibody production in autoimmune nonobese diabetic mice: cellular and molecular characterization of tertiary lymphoid structures in pancreatic islets. J Immunol 185(6):3359–3368. https://doi.org/10.4049/jimmunol.1001836

    Article  PubMed  CAS  Google Scholar 

  40. Zhang X, Liu S, Chang T et al (2016) Intrathymic Tfh/B cells interaction leads to ectopic GCs formation and anti-AChR antibody production: central role in triggering MG occurrence. Mol Neurobiol 53(1):120–131. https://doi.org/10.1007/s12035-014-8985-1

    Article  PubMed  CAS  Google Scholar 

  41. Hill ME, Shiono H, Newsom-Davis J, Willcox N (2008) The myasthenia gravis thymus: a rare source of human autoantibody-secreting plasma cells for testing potential therapeutics. J Neuroimmunol 201-202:50–56. https://doi.org/10.1016/j.jneuroim.2008.06.027

    Article  PubMed  CAS  Google Scholar 

  42. Pei G, Zeng R, Han M et al (2014) Renal interstitial infiltration and tertiary lymphoid organ neogenesis in IgA nephropathy. Clin J Am Soc Nephrol 9(2):255–264. https://doi.org/10.2215/CJN.01150113

    Article  PubMed  CAS  Google Scholar 

  43. Magliozzi R, Howell O, Vora A et al (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130(Pt 4):1089–1104. https://doi.org/10.1093/brain/awm038

    Article  PubMed  Google Scholar 

  44. Chang A, Henderson SG, Brandt D et al (2011) In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J Immunol 186(3):1849–1860. https://doi.org/10.4049/jimmunol.1001983

    Article  PubMed  CAS  Google Scholar 

  45. Rangel-Moreno J, Hartson L, Navarro C et al (2006) Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. J Clin Invest 116(12):3183–3194. https://doi.org/10.1172/JCI28756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Corsiero E, Bombardieri M, Carlotti E et al (2016) Single cell cloning and recombinant monoclonal antibodies generation from RA synovial B cells reveal frequent targeting of citrullinated histones of NETs. Ann Rheum Dis 75(10):1866–1875. https://doi.org/10.1136/annrheumdis-2015-208356

    Article  PubMed  CAS  Google Scholar 

  47. Scheel T, Gursche A, Zacher J et al (2011) V-region gene analysis of locally defined synovial B and plasma cells reveals selected B cell expansion and accumulation of plasma cell clones in rheumatoid arthritis. Arthritis Rheum 63(1):63–72. https://doi.org/10.1002/art.27767

    Article  PubMed  CAS  Google Scholar 

  48. Kim HJ, Berek C (2000) B cells in rheumatoid arthritis. Arthritis Res 2(2):126–131. https://doi.org/10.1186/ar77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Salomonsson S, Jonsson MV, Skarstein K et al (2003) Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjogren's syndrome. Arthritis Rheum 48(11):3187–3201. https://doi.org/10.1002/art.11311

    Article  PubMed  CAS  Google Scholar 

  50. Zhang Z, Kyttaris VC, Tsokos GC (2009) The role of IL-23/IL-17 axis in lupus nephritis. J Immunol 183(5):3160–3169. https://doi.org/10.4049/jimmunol.0900385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Pisitkun P, Ha HL, Wang H et al (2012) Interleukin-17 cytokines are critical in development of fatal lupus glomerulonephritis. Immunity 37(6):1104–1115. https://doi.org/10.1016/j.immuni.2012.08.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hirota K, Yoshitomi H, Hashimoto M et al (2007) Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med 204(12):2803–2812. https://doi.org/10.1084/jem.20071397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Genovese MC, Durez P, Richards HB et al (2014) One-year efficacy and safety results of secukinumab in patients with rheumatoid arthritis: phase II, dose-finding, double-blind, randomized, placebo-controlled study. J Rheumatol 41(3):414–421. https://doi.org/10.3899/jrheum.130637

    Article  PubMed  CAS  Google Scholar 

  54. Crispin JC, Oukka M, Bayliss G et al (2008) Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol 181(12):8761–8766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nistala K, Adams S, Cambrook H et al (2010) Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment. Proc Natl Acad Sci U S A 107(33):14751–14756. https://doi.org/10.1073/pnas.1003852107

    Article  PubMed  PubMed Central  Google Scholar 

  56. Harbour SN, Maynard CL, Zindl CL et al (2015) Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc Natl Acad Sci U S A 112(22):7061–7066. https://doi.org/10.1073/pnas.1415675112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Fleige H, Ravens S, Moschovakis GL et al (2014) IL-17-induced CXCL12 recruits B cells and induces follicle formation in BALT in the absence of differentiated FDCs. J Exp Med 211(4):643–651. https://doi.org/10.1084/jem.20131737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Eddens T, Elsegeiny W, Garcia-Hernadez ML et al (2017) Pneumocystis-driven inducible bronchus-associated lymphoid tissue formation requires Th2 and Th17 immunity. Cell Rep 18(13):3078–3090. https://doi.org/10.1016/j.celrep.2017.03.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Rehal S, von der Weid PY (2017) TNFDeltaARE mice display abnormal lymphatics and develop tertiary lymphoid organs in the mesentery. Am J Pathol 187(4):798–807. https://doi.org/10.1016/j.ajpath.2016.12.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lee Y, Chin RK, Christiansen P et al (2006) Recruitment and activation of naive T cells in the islets by lymphotoxin beta receptor-dependent tertiary lymphoid structure. Immunity 25(3):499–509. https://doi.org/10.1016/j.immuni.2006.06.016

    Article  PubMed  CAS  Google Scholar 

  61. Song HW, Yang C, Liu W et al (2017) Interleukin-17A plays the same role on mice acute lung injury respectively induced by lipopolysaccharide and paraquat. Inflammation 40:1509–1519. https://doi.org/10.1007/s10753-017-0592-7

    Article  PubMed  CAS  Google Scholar 

  62. Foo SY, Zhang V, Lalwani A et al (2015) Regulatory T cells prevent inducible BALT formation by dampening neutrophilic inflammation. J Immunol 194(9):4567–4576. https://doi.org/10.4049/jimmunol.1400909

    Article  PubMed  CAS  Google Scholar 

  63. Mohr E, Serre K, Manz RA et al (2009) Dendritic cells and monocyte/macrophages that create the IL-6/APRIL-rich lymph node microenvironments where plasmablasts mature. J Immunol 182(4):2113–2123. https://doi.org/10.4049/jimmunol.0802771

    Article  PubMed  CAS  Google Scholar 

  64. Solleti SK, Srisuma S, Bhattacharya S et al (2016) Serpine2 deficiency results in lung lymphocyte accumulation and bronchus-associated lymphoid tissue formation. FASEB J 30(7):2615–2626. https://doi.org/10.1096/fj.201500159R

    Article  PubMed  CAS  Google Scholar 

  65. Picarella DE, Kratz A, Li CB et al (1993) Transgenic tumor necrosis factor (TNF)-alpha production in pancreatic islets leads to insulitis, not diabetes. Distinct patterns of inflammation in TNF-alpha and TNF-beta transgenic mice. J Immunol 150(9):4136–4150

    PubMed  CAS  Google Scholar 

  66. Picarella DE, Kratz A, Li CB et al (1992) Insulitis in transgenic mice expressing tumor necrosis factor beta (lymphotoxin) in the pancreas. Proc Natl Acad Sci U S A 89(21):10036–10040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Flavell RA, Kratz A, Ruddle NH (1996) The contribution of insulitis to diabetes development in tumor necrosis factor transgenic mice. Curr Top Microbiol Immunol 206:33–50

    PubMed  CAS  Google Scholar 

  68. Penaranda C, Tang Q, Ruddle NH, Bluestone JA (2010) Prevention of diabetes by FTY720-mediated stabilization of peri-islet tertiary lymphoid organs. Diabetes 59(6):1461–1468. https://doi.org/10.2337/db09-1129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Mounzer RH, Svendsen OS, Baluk P et al (2010) Lymphotoxin-alpha contributes to lymphangiogenesis. Blood 116(12):2173–2182. https://doi.org/10.1182/blood-2009-12-256065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Zhang Q, Lu Y, Proulx ST et al (2007) Increased lymphangiogenesis in joints of mice with inflammatory arthritis. Arthritis Res Ther 9(6):R118. https://doi.org/10.1186/ar2326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ansel KM, Ngo VN, Hyman PL et al (2000) A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406(6793):309–314. https://doi.org/10.1038/35018581

    Article  PubMed  CAS  Google Scholar 

  72. Luther SA, Bidgol A, Hargreaves DC et al (2002) Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol 169(1):424–433

    Article  CAS  PubMed  Google Scholar 

  73. Cyster JG (1999) Chemokines and the homing of dendritic cells to the T cell areas of lymphoid organs. J Exp Med 189(3):447–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Marinkovic T, Garin A, Yokota Y et al (2006) Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid. J Clin Invest 116(10):2622–2632. https://doi.org/10.1172/JCI28993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Marchesi F, Martin AP, Thirunarayanan N et al (2009) CXCL13 expression in the gut promotes accumulation of IL-22-producing lymphoid tissue-inducer cells, and formation of isolated lymphoid follicles. Mucosal Immunol 2(6):486–494. https://doi.org/10.1038/mi.2009.113

    Article  PubMed  CAS  Google Scholar 

  76. Furtado GC, Pacer ME, Bongers G et al (2014) TNFalpha-dependent development of lymphoid tissue in the absence of RORgammat(+) lymphoid tissue inducer cells. Mucosal Immunol 7(3):602–614. https://doi.org/10.1038/mi.2013.79

    Article  PubMed  CAS  Google Scholar 

  77. Chen L, He Z, Slinger E et al (2015) IL-23 activates innate lymphoid cells to promote neonatal intestinal pathology. Mucosal Immunol 8(2):390–402. https://doi.org/10.1038/mi.2014.77

    Article  PubMed  CAS  Google Scholar 

  78. Meier D, Bornmann C, Chappaz S et al (2007) Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity 26(5):643–654. https://doi.org/10.1016/j.immuni.2007.04.009

    Article  PubMed  CAS  Google Scholar 

  79. Baluk P, Adams A, Phillips K et al (2014) Preferential lymphatic growth in bronchus-associated lymphoid tissue in sustained lung inflammation. Am J Pathol 184(5):1577–1592. https://doi.org/10.1016/j.ajpath.2014.01.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Gaur S, Trayner E, Aish L, Weinstein R (2004) Bronchus-associated lymphoid tissue lymphoma arising in a patient with bronchiectasis and chronic Mycobacterium avium infection. Am J Hematol 77(1):22–25. https://doi.org/10.1002/ajh.20136

    Article  PubMed  CAS  Google Scholar 

  81. Khader SA, Guglani L, Rangel-Moreno J, Gopal R et al (2011) IL-23 is required for long-term control of Mycobacterium tuberculosis and B cell follicle formation in the infected lung. J Immunol 187(10):5402–5407. https://doi.org/10.4049/jimmunol.1101377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Kaushal D, Foreman TW, Gautam US et al (2015) Mucosal vaccination with attenuated Mycobacterium tuberculosis induces strong central memory responses and protects against tuberculosis. Nat Commun 6:8533. https://doi.org/10.1038/ncomms9533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kahnert A, Hopken UE, Stein M et al (2007) Mycobacterium tuberculosis triggers formation of lymphoid structure in murine lungs. J Infect Dis 195(1):46–54. https://doi.org/10.1086/508894

    Article  PubMed  CAS  Google Scholar 

  84. GeurtsvanKessel CH, Willart MA, Bergen IM et al (2009) Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. J Exp Med 206(11):2339–2349. https://doi.org/10.1084/jem.20090410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Kocks JR, Adler H, Danzer H et al (2009) Chemokine receptor CCR7 contributes to a rapid and efficient clearance of lytic murine gamma-herpes virus 68 from the lung, whereas bronchus-associated lymphoid tissue harbors virus during latency. J Immunol 182(11):6861–6869. https://doi.org/10.4049/jimmunol.0801826

    Article  PubMed  CAS  Google Scholar 

  86. Takamura S, Yagi H, Hakata Y et al (2016) Specific niches for lung-resident memory CD8+ T cells at the site of tissue regeneration enable CD69-independent maintenance. J Exp Med 213(13):3057–3073. https://doi.org/10.1084/jem.20160938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Nakayama M, Ozaki H, Itoh Y et al (2016) Vaccination against H9N2 avian influenza virus reduces bronchus-associated lymphoid tissue formation in cynomolgus macaques after intranasal virus challenge infection. Pathol Int 66(12):678–686. https://doi.org/10.1111/pin.12472

    Article  PubMed  CAS  Google Scholar 

  88. Slight SR, Rangel-Moreno J, Gopal R et al (2013) CXCR5(+) T helper cells mediate protective immunity against tuberculosis. J Clin Invest 123(2):712–726. https://doi.org/10.1172/JCI65728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Khader SA, Gaffen SL, Kolls JK (2009) Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol 2(5):403–411. https://doi.org/10.1038/mi.2009.100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Shen H, Gu J, Xiao H et al (2017) Selective destruction of interleukin 23-induced expansion of a major antigen-specific gammadelta T-cell subset in patients with tuberculosis. J Infect Dis 215(3):420–430. https://doi.org/10.1093/infdis/jiw511

    Article  PubMed  Google Scholar 

  91. Shen H, Chen ZW (2017) The crucial roles of Th17-related cytokines/signal pathways in M. tuberculosis infection. Cell Mol Immunol 15:216–225. https://doi.org/10.1038/cmi.2017.128

    Article  PubMed  CAS  Google Scholar 

  92. Quesniaux VF, Jacobs M, Allie N et al (2010) TNF in host resistance to tuberculosis infection. Curr Dir Autoimmun 11:157–179. https://doi.org/10.1159/000289204

    Article  PubMed  CAS  Google Scholar 

  93. Day TA, Koch M, Nouailles G et al (2010) Secondary lymphoid organs are dispensable for the development of T-cell-mediated immunity during tuberculosis. Eur J Immunol 40(6):1663–1673. https://doi.org/10.1002/eji.201040299

    Article  PubMed  CAS  Google Scholar 

  94. Allie N, Keeton R, Court N et al (2010) Limited role for lymphotoxin alpha in the host immune response to Mycobacterium tuberculosis. J Immunol 185(7):4292–4301. https://doi.org/10.4049/jimmunol.1000650

    Article  PubMed  CAS  Google Scholar 

  95. Hu D, Mohanta SK, Yin C et al (2015) Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin beta receptors. Immunity 42(6):1100–1115. https://doi.org/10.1016/j.immuni.2015.05.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Fletcher AL, Lukacs-Kornek V, Reynoso ED et al (2010) Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J Exp Med 207(4):689–697. https://doi.org/10.1084/jem.20092642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Cohen JN, Guidi CJ, Tewalt EF et al (2010) Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J Exp Med 207(4):681–688. https://doi.org/10.1084/jem.20092465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Warren KJ, Iwami D, Harris DG et al (2014) Laminins affect T cell trafficking and allograft fate. J Clin Invest 124(5):2204–2218. https://doi.org/10.1172/JCI73683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Baptista AP, Roozendaal R, Reijmers RM et al (2014) Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. Elife 3. https://doi.org/10.7554/eLife.04433

  100. Siegert S, Huang HY, Yang CY et al (2011) Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide. PLoS One 6(11):e27618. https://doi.org/10.1371/journal.pone.0027618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Lukacs-Kornek V, Malhotra D, Fletcher AL et al (2011) Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat Immunol 12(11):1096–1104. https://doi.org/10.1038/ni.2112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Khan O, Headley M, Gerard A et al (2011) Regulation of T cell priming by lymphoid stroma. PLoS One 6(11):e26138. https://doi.org/10.1371/journal.pone.0026138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Zinocker S, Vaage JT (2012) Rat mesenchymal stromal cells inhibit T cell proliferation but not cytokine production through inducible nitric oxide synthase. Front Immunol 3:62. https://doi.org/10.3389/fimmu.2012.00062

    Article  PubMed  PubMed Central  Google Scholar 

  104. Matloubian M, Lo CG, Cinamon G et al (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427(6972):355–360. https://doi.org/10.1038/nature02284

    Article  PubMed  CAS  Google Scholar 

  105. Sawicka E, Zuany-Amorim C, Manlius C et al (2003) Inhibition of Th1- and Th2-mediated airway inflammation by the sphingosine 1-phosphate receptor agonist FTY720. J Immunol 171(11):6206–6214

    Article  CAS  PubMed  Google Scholar 

  106. Idzko M, Hammad H, van Nimwegen M et al (2006) Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J Clin Invest 116(11):2935–2944. https://doi.org/10.1172/JCI28295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Kocks JR, Davalos-Misslitz AC, Hintzen G et al (2007) Regulatory T cells interfere with the development of bronchus-associated lymphoid tissue. J Exp Med 204(4):723–734. https://doi.org/10.1084/jem.20061424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Brinkmann V, Billich A, Baumruker T et al (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 9(11):883–897. https://doi.org/10.1038/nrd3248

    Article  PubMed  CAS  Google Scholar 

  109. Shin K, Kataru RP, Park HJ et al (2015) TH2 cells and their cytokines regulate formation and function of lymphatic vessels. Nat Commun 6:6196. https://doi.org/10.1038/ncomms7196

    Article  PubMed  CAS  Google Scholar 

  110. Randolph GJ, Angeli V, Swartz MA (2005) Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5(8):617–628. https://doi.org/10.1038/nri1670

    Article  PubMed  CAS  Google Scholar 

  111. Loo CP, Nelson NA, Lane RS et al (2017) Lymphatic vessels balance viral dissemination and immune activation following cutaneous viral infection. Cell Rep 20(13):3176–3187. https://doi.org/10.1016/j.celrep.2017.09.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Kataru RP, Lee YG, Koh GY (2014) Interactions of immune cells and lymphatic vessels. Adv Anat Embryol Cell Biol 214:107–118. https://doi.org/10.1007/978-3-7091-1646-3_9

    Article  PubMed  Google Scholar 

  113. Roozendaal R, Mebius RE (2011) Stromal cell-immune cell interactions. Annu Rev Immunol 29:23–43. https://doi.org/10.1146/annurev-immunol-031210-101357

    Article  PubMed  CAS  Google Scholar 

  114. Meza-Perez S, Randall TD (2017) Immunological functions of the omentum. Trends Immunol 38(7):526–536. https://doi.org/10.1016/j.it.2017.03.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Benezech C, Luu NT, Walker JA et al (2015) Inflammation-induced formation of fat-associated lymphoid clusters. Nat Immunol 16(8):819–828. https://doi.org/10.1038/ni.3215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Wagnetz D, Sato M, Hirayama S et al (2012) Rejection of tracheal allograft by intrapulmonary lymphoid neogenesis in the absence of secondary lymphoid organs. Transplantation 93(12):1212–1220. https://doi.org/10.1097/TP.0b013e318250fbf5

    Article  PubMed  Google Scholar 

  117. Sautes-Fridman C, Fridman WH (2016) TLS in tumors: what lies within. Trends Immunol 37(1):1–2. https://doi.org/10.1016/j.it.2015.12.001

    Article  PubMed  CAS  Google Scholar 

  118. Nasr IW, Reel M, Oberbarnscheidt MH et al (2007) Tertiary lymphoid tissues generate effector and memory T cells that lead to allograft rejection. Am J Transplant 7(5):1071–1079. https://doi.org/10.1111/j.1600-6143.2007.01756.x

    Article  PubMed  CAS  Google Scholar 

  119. Gelman AE, Li W, Richardson SB et al (2009) Cutting edge: acute lung allograft rejection is independent of secondary lymphoid organs. J Immunol 182(7):3969–3973. https://doi.org/10.4049/jimmunol.0803514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Sicard A, Chen CC, Morelon E, Thaunat O (2016) Alloimmune-induced intragraft lymphoid neogenesis promotes B-cell tolerance breakdown that accelerates chronic rejection. Curr Opin Organ Transplant 21(4):368–374. https://doi.org/10.1097/MOT.0000000000000329

    Article  PubMed  CAS  Google Scholar 

  121. Li W, Bribriesco AC, Nava RG, Brescia AA et al (2012) Lung transplant acceptance is facilitated by early events in the graft and is associated with lymphoid neogenesis. Mucosal Immunol 5(5):544–554. https://doi.org/10.1038/mi.2012.30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Le Texier L, Thebault P, Lavault A et al (2011) Long-term allograft tolerance is characterized by the accumulation of B cells exhibiting an inhibited profile. Am J Transplant 11(3):429–438. https://doi.org/10.1111/j.1600-6143.2010.03336.x

    Article  PubMed  CAS  Google Scholar 

  123. Legoux FP, Lim JB, Cauley AW et al (2015) CD4+ T cell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T cells rather than deletion. Immunity 43(5):896–908. https://doi.org/10.1016/j.immuni.2015.10.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Hiraoka N, Ino Y, Yamazaki-Itoh R (2016) Tertiary lymphoid organs in cancer tissues. Front Immunol 7:244. https://doi.org/10.3389/fimmu.2016.00244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Dieu-Nosjean MC, Giraldo NA, Kaplon H et al (2016) Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. Immunol Rev 271(1):260–275. https://doi.org/10.1111/imr.12405

    Article  PubMed  CAS  Google Scholar 

  126. Dieu-Nosjean MC, Antoine M, Danel C et al (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26(27):4410–4417. https://doi.org/10.1200/JCO.2007.15.0284

    Article  PubMed  CAS  Google Scholar 

  127. de Chaisemartin L, Goc J, Damotte D et al (2011) Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res 71(20):6391–6399. https://doi.org/10.1158/0008-5472.CAN-11-0952

    Article  PubMed  CAS  Google Scholar 

  128. Weinstein AM, Chen L, Brzana EA et al (2017) Tbet and IL-36gamma cooperate in therapeutic DC-mediated promotion of ectopic lymphoid organogenesis in the tumor microenvironment. Oncoimmunology 6(6):e1322238. https://doi.org/10.1080/2162402X.2017.1322238

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hiraoka N, Ino Y, Yamazaki-Itoh R et al (2015) Intratumoral tertiary lymphoid organ is a favourable prognosticator in patients with pancreatic cancer. Br J Cancer 112(11):1782–1790. https://doi.org/10.1038/bjc.2015.145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Joshi NS, Akama-Garren EH, Lu Y et al (2015) Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity 43(3):579–590. https://doi.org/10.1016/j.immuni.2015.08.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy D. Randall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Silva-Sanchez, A., Randall, T.D., Meza-Perez, S. (2018). Tertiary Lymphoid Structures Among the World of Noncanonical Ectopic Lymphoid Organizations. In: Dieu-Nosjean, MC. (eds) Tertiary Lymphoid Structures. Methods in Molecular Biology, vol 1845. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8709-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8709-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8708-5

  • Online ISBN: 978-1-4939-8709-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics