Skip to main content

Generating Intracellular Modulators of E3 Ligases and Deubiquitinases from Phage-Displayed Ubiquitin Variant Libraries

  • Protocol
  • First Online:
Book cover The Ubiquitin Proteasome System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1844))

Abstract

Ubiquitination is a posttranslational protein modification pathway regulating diverse cellular processes that are implicated in numerous human diseases. However, targeting the enzymes in the ubiquitination cascade potently and selectively remains a major challenge. Recently we devised a methodology to generate ubiquitin-based modulators for E3 ligases and deubiquitinases, enzymes that control the specificity of protein ubiquitination and deubiquitination, respectively. Here, we describe methods to generate libraries of ubiquitin variants and perform phage display selections to isolate high-affinity binders for target proteins. Importantly, the strategy introduced here can be applied to other small protein domains mediating protein-protein interactions to engineer tools for target validation and potential therapeutic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Hakim A, Escribano-Diaz C, Landry MC, O’Donnell L, Panier S, Szilard RK, Durocher D (2010) The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair 9(12):1229–1240. https://doi.org/10.1016/j.dnarep.2010.09.011

    Article  CAS  PubMed  Google Scholar 

  2. Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE (2011) Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov 10(1):29–46. https://doi.org/10.1038/nrd3321

    Article  CAS  PubMed  Google Scholar 

  3. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229. https://doi.org/10.1146/annurev-biochem-060310-170328

    Article  CAS  PubMed  Google Scholar 

  4. Clague MJ, Liu H, Urbe S (2012) Governance of endocytic trafficking and signaling by reversible ubiquitylation. Dev Cell 23(3):457–467. https://doi.org/10.1016/j.devcel.2012.08.011

    Article  CAS  PubMed  Google Scholar 

  5. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479. https://doi.org/10.1146/annurev.biochem.67.1.425

    Article  CAS  Google Scholar 

  6. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123(5):773–786. https://doi.org/10.1016/j.cell.2005.11.007

    Article  CAS  PubMed  Google Scholar 

  7. Nalepa G, Rolfe M, Harper JW (2006) Drug discovery in the ubiquitin-proteasome system. Nat Rev Drug Discov 5(7):596–613. https://doi.org/10.1038/nrd2056

    Article  CAS  PubMed  Google Scholar 

  8. Petroski MD (2008) The ubiquitin system, disease, and drug discovery. BMC Biochem 9(Suppl 1):S7. https://doi.org/10.1186/1471-2091-9-S1-S7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cohen P, Tcherpakov M (2010) Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 143(5):686–693. https://doi.org/10.1016/j.cell.2010.11.016

    Article  CAS  PubMed  Google Scholar 

  10. Harper JW, King RW (2011) Stuck in the middle: drugging the ubiquitin system at the e2 step. Cell 145(7):1007–1009. https://doi.org/10.1016/j.cell.2011.06.002

    Article  CAS  PubMed  Google Scholar 

  11. Maculins T, Fiskin E, Bhogaraju S, Dikic I (2016) Bacteria-host relationship: ubiquitin ligases as weapons of invasion. Cell Res 26(4):499–510. https://doi.org/10.1038/cr.2016.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin YH, Machner MP (2017) Exploitation of the host cell ubiquitin machinery by microbial effector proteins. J Cell Sci 130(12):1985–1996. https://doi.org/10.1242/jcs.188482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bailey-Elkin BA, Knaap RCM, Kikkert M, Mark BL (2017) Structure and function of viral deubiquitinating enzymes. J Mol Biol 429:3441. https://doi.org/10.1016/j.jmb.2017.06.010

    Article  CAS  PubMed  Google Scholar 

  14. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, Rajkumar SV, Srkalovic G, Alsina M, Alexanian R, Siegel D, Orlowski RZ, Kuter D, Limentani SA, Lee S, Hideshima T, Esseltine DL, Kauffman M, Adams J, Schenkein DP, Anderson KC (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348(26):2609–2617. https://doi.org/10.1056/NEJMoa030288

    Article  CAS  Google Scholar 

  15. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, Harousseau JL, Ben-Yehuda D, Lonial S, Goldschmidt H, Reece D, San-Miguel JF, Blade J, Boccadoro M, Cavenagh J, Dalton WS, Boral AL, Esseltine DL, Porter JB, Schenkein D, Anderson KC (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352(24):2487–2498. https://doi.org/10.1056/NEJMoa043445

    Article  CAS  Google Scholar 

  16. Ernst A, Avvakumov G, Tong J, Fan Y, Zhao Y, Alberts P, Persaud A, Walker JR, Neculai AM, Neculai D, Vorobyov A, Garg P, Beatty L, Chan PK, Juang YC, Landry MC, Yeh C, Zeqiraj E, Karamboulas K, Allali-Hassani A, Vedadi M, Tyers M, Moffat J, Sicheri F, Pelletier L, Durocher D, Raught B, Rotin D, Yang J, Moran MF, Dhe-Paganon S, Sidhu SS (2013) A strategy for modulation of enzymes in the ubiquitin system. Science 339(6119):590–595. https://doi.org/10.1126/science.1230161

    Article  CAS  PubMed  Google Scholar 

  17. Zhang W, Sidhu SS (2014) Development of inhibitors in the ubiquitination cascade. FEBS Lett 588(2):356–367. https://doi.org/10.1016/j.febslet.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  18. Husnjak K, Dikic I (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 81:291–322. https://doi.org/10.1146/annurev-biochem-051810-094654

    Article  CAS  PubMed  Google Scholar 

  19. Brown NG, VanderLinden R, Watson ER, Weissmann F, Ordureau A, Wu KP, Zhang W, Yu S, Mercredi PY, Harrison JS, Davidson IF, Qiao R, Lu Y, Dube P, Brunner MR, Grace CR, Miller DJ, Haselbach D, Jarvis MA, Yamaguchi M, Yanishevski D, Petzold G, Sidhu SS, Kuhlman B, Kirschner MW, Harper JW, Peters JM, Stark H, Schulman BA (2016) Dual RING E3 architectures regulate multiubiquitination and ubiquitin chain elongation by APC/C. Cell 165(6):1440–1453. https://doi.org/10.1016/j.cell.2016.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gorelik M, Orlicky S, Sartori MA, Tang X, Marcon E, Kurinov I, Greenblatt JF, Tyers M, Moffat J, Sicheri F, Sidhu SS (2016) Inhibition of SCF ubiquitin ligases by engineered ubiquitin variants that target the Cul1 binding site on the Skp1-F-box interface. Proc Natl Acad Sci U S A 113(13):3527–3532. https://doi.org/10.1073/pnas.1519389113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leung I, Dekel A, Shifman JM, Sidhu SS (2016) Saturation scanning of ubiquitin variants reveals a common hot spot for binding to USP2 and USP21. Proc Natl Acad Sci U S A 113:8705. https://doi.org/10.1073/pnas.1524648113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang W, Wu KP, Sartori MA, Kamadurai HB, Ordureau A, Jiang C, Mercredi PY, Murchie R, Hu J, Persaud A, Mukherjee M, Li N, Doye A, Walker JR, Sheng Y, Hao Z, Li Y, Brown KR, Lemichez E, Chen J, Tong Y, Harper JW, Moffat J, Rotin D, Schulman BA, Sidhu SS (2016) System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes. Mol Cell 62(1):121–136. https://doi.org/10.1016/j.molcel.2016.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Manczyk N, Yates BP, Veggiani G, Ernst A, Sicheri F, Sidhu SS (2017) Structural and functional characterization of a ubiquitin variant engineered for tight and specific binding to an alpha-helical ubiquitin interacting motif. Protein Sci 26:1060. https://doi.org/10.1002/pro.3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang W, Bailey-Elkin BA, Knaap RCM, Khare B, Dalebout TJ, Johnson GG, van Kasteren PB, McLeish NJ, Gu J, He W, Kikkert M, Mark BL, Sidhu SS (2017) Potent and selective inhibition of pathogenic viruses by engineered ubiquitin variants. PLoS Pathog 13(5):e1006372. https://doi.org/10.1371/journal.ppat.1006372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang W, Sartori MA, Makhnevych T, Federowicz KE, Dong X, Liu L, Nim S, Dong A, Yang J, Li Y, Haddad D, Ernst A, Heerding D, Tong Y, Moffat J, Sidhu SS (2017) Generation and validation of intracellular ubiquitin variant inhibitors for USP7 and USP10. J Mol Biol 429:3546. https://doi.org/10.1016/j.jmb.2017.05.025

    Article  CAS  PubMed  Google Scholar 

  26. Ernst A, Gfeller D, Kan Z, Seshagiri S, Kim PM, Bader GD, Sidhu SS (2010) Coevolution of PDZ domain-ligand interactions analyzed by high-throughput phage display and deep sequencing. Mol BioSyst 6(10):1782–1790. https://doi.org/10.1039/c0mb00061b

    Article  CAS  Google Scholar 

  27. Maspero E, Polo S (2016) In vitro ubiquitination: self-ubiquitination, chain formation, and substrate ubiquitination assays. Methods Mol Biol 1449:153–160. https://doi.org/10.1007/978-1-4939-3756-1_7

    Article  CAS  PubMed  Google Scholar 

  28. Azkargorta M, Escobes I, Elortza F, Matthiesen R, Rodriguez MS (2016) TUBEs-mass spectrometry for identification and analysis of the ubiquitin-proteome. Methods Mol Biol 1449:177–192. https://doi.org/10.1007/978-1-4939-3756-1_9

    Article  CAS  PubMed  Google Scholar 

  29. Sigismund S, Polo S (2016) Strategies to detect endogenous ubiquitination of a target mammalian protein. Methods Mol Biol 1449:143–151. https://doi.org/10.1007/978-1-4939-3756-1_6

    Article  CAS  PubMed  Google Scholar 

  30. Furukawa M, Andrews PS, Xiong Y (2005) Assays for RING family ubiquitin ligases. Methods Mol Biol 301:37–46. https://doi.org/10.1385/1-59259-895-1:037

    Article  CAS  PubMed  Google Scholar 

  31. Russell NS, Wilkinson KD (2005) Deubiquitinating enzyme purification, assay inhibitors, and characterization. Methods Mol Biol 301:207–219. https://doi.org/10.1385/1-59259-895-1:207

    Article  CAS  PubMed  Google Scholar 

  32. Tonikian R, Zhang Y, Boone C, Sidhu SS (2007) Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries. Nat Protoc 2(6):1368–1386. https://doi.org/10.1038/nprot.2007.151

    Article  CAS  PubMed  Google Scholar 

  33. Sidhu SS, Lowman HB, Cunningham BC, Wells JA (2000) Phage display for selection of novel binding peptides. Methods Enzymol 328:333–363

    Article  CAS  Google Scholar 

  34. Thalassinos K, Grabenauer M, Slade SE, Hilton GR, Bowers MT, Scrivens JH (2009) Characterization of phosphorylated peptides using traveling wave-based and drift cell ion mobility mass spectrometry. Anal Chem 81(1):248–254. https://doi.org/10.1021/ac801916h

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the technical assistance and work summary from Mr. Jun Gu. We greatly appreciate the help from past and present collaborators, including Drs. Andreas Ernst, Jason Moffat, Brenda A. Schulman, J. Wade Harper, Daniela Rotin, Danny T. Huang, Brian L Mark, and Marjolein Kikkert. This work is supported by the Canadian Institutes of Health Research (CIHR) project grant (#0000303157) awarded to S.S.S.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang or Sachdev S. Sidhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, W., Sidhu, S.S. (2018). Generating Intracellular Modulators of E3 Ligases and Deubiquitinases from Phage-Displayed Ubiquitin Variant Libraries. In: Mayor, T., Kleiger, G. (eds) The Ubiquitin Proteasome System. Methods in Molecular Biology, vol 1844. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8706-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8706-1_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8705-4

  • Online ISBN: 978-1-4939-8706-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics