Skip to main content

Interpreting the Language of Polyubiquitin with Linkage-Specific Antibodies and Mass Spectrometry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1844))

Abstract

Posttranslational modification of cellular proteins by ubiquitin serves a variety of functions. Among the multitude of ubiquitin substrates, ubiquitin itself is the most prevalent. For many years, the direct detection of polyubiquitin chains attached to cellular substrates was not practical, with cell biologists relegated to indirect approaches involving site-directed mutagenesis or in vitro biochemistry. Recent advances in two technologies—polyubiquitin linkage-specific antibodies and mass spectrometry proteomics, have overcome that limitation. Using one or both of these, the direct analysis of polyubiquitin chain linkages on cellular substrate proteins may be performed. This paper describes the complimentary nature of linkage-specific antibodies and mass spectrometry proteomics for the characterization of complex ubiquitin signals using lessons learned in early development of both technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Varshavsky A (2012) The ubiquitin system, an immense realm. Annu Rev Biochem 81:167–176. https://doi.org/10.1146/annurev-biochem-051910-094049

    Article  CAS  PubMed  Google Scholar 

  2. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229. https://doi.org/10.1146/annurev-biochem-060310-170328

    Article  CAS  PubMed  Google Scholar 

  3. Husnjak K, Dikic I (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 81:291–322. https://doi.org/10.1146/annurev-biochem-051810-094654

    Article  CAS  PubMed  Google Scholar 

  4. Emmerich CH, Ordureau A, Strickson S et al (2013) Activation of the canonical ikk complex by k63/m1-linked hybrid ubiquitin chains. Proc Natl Acad Sci U S A 110:15247–15252. https://doi.org/10.1073/pnas.1314715110

    Article  PubMed  PubMed Central  Google Scholar 

  5. Meyer H-J, Rape M (2014) Enhanced protein degradation by branched ubiquitin chains. Cell 157:910–921. https://doi.org/10.1016/j.cell.2014.03.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ohtake F, Saeki Y, Ishido S, Kanno J, Tanaka K (2016) The K48-K63 branched ubiquitin chain regulates NF-κB signaling. Mol Cell 64:251–266. https://doi.org/10.1016/j.molcel.2016.09.014

    Article  CAS  PubMed  Google Scholar 

  7. Newton K, Matsumoto ML, Wertz IE et al (2008) Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134:668–678. https://doi.org/10.1016/j.cell.2008.07.039

    Article  CAS  PubMed  Google Scholar 

  8. Wang H, Matsuzawa A, Brown SA et al (2008) Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin. Proc Natl Acad Sci U S A 105:20197–20202. https://doi.org/10.1073/pnas.0810461105

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tokunaga F, Sakata S, Saeki Y et al (2009) Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 11:123–132. https://doi.org/10.1038/ncb1821

    Article  CAS  PubMed  Google Scholar 

  10. Matsumoto ML, Wickliffe KE, Dong KC et al (2010) K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell 39:477–484. https://doi.org/10.1016/j.molcel.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  11. Matsumoto ML, Dong KC, Yu C et al (2012) Engineering and structural characterization of a linear polyubiquitin-specific antibody. J Mol Biol 418:134–144. https://doi.org/10.1016/j.jmb.2011.12.053

    Article  CAS  PubMed  Google Scholar 

  12. Newton K, Matsumoto ML, Ferrando RE et al (2012) Using linkage-specific monoclonal antibodies to analyze cellular ubiquitylation. Methods Mol Biol 832:185–196. https://doi.org/10.1007/978-1-61779-474-2_13

    Article  CAS  PubMed  Google Scholar 

  13. Peng J, Schwartz D, Elias JE et al (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21:921–926. https://doi.org/10.1038/nbt849

    Article  CAS  PubMed  Google Scholar 

  14. Kirkpatrick DS, Hathaway NA, Hanna J et al (2006) Quantitative analysis of in vitro ubiquitinated cyclin b1 reveals complex chain topology. Nat Cell Biol 8:700–710. https://doi.org/10.1038/ncb1436

    Article  CAS  PubMed  Google Scholar 

  15. Phu L, Izrael-Tomasevic A, Matsumoto ML et al (2011) Improved quantitative mass spectrometry methods for characterizing complex ubiquitin signals. Mol Cell Proteomics 10:M110.003756. https://doi.org/10.1074/mcp.M110.003756

    Article  CAS  PubMed  Google Scholar 

  16. Kaiser SE, Riley BE, Shaler TA et al (2011) Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat Methods 8:691–696. https://doi.org/10.1038/nmeth.1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Castañeda CA, Kashyap TR, Nakasone MA, Krueger S, Fushman D (2013) Unique structural, dynamical, and functional properties of K11-linked polyubiquitin chains. Struct Lond Engl 1993(21):1168–1181. https://doi.org/10.1016/j.str.2013.04.029

    Article  CAS  Google Scholar 

  18. Castañeda CA, Chaturvedi A, Camara CM, Curtis JE, Krueger S, Fushman D (2016) Linkage-specific conformational ensembles of non-canonical polyubiquitin chains. Phys Chem Chem Phys 18:5771–5788. https://doi.org/10.1039/c5cp04601g

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu Z, Gong Z, Jiang W-X et al (2015) Lys63-linked ubiquitin chain adopts multiple conformational states for specific target recognition. eLife 4. https://doi.org/10.7554/eLife.05767

  20. Varadan R, Assfalg M, Haririnia A, Raasi S, Pickart C, Fushman D (2004) Solution conformation of lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J Biol Chem 279:7055–7063. https://doi.org/10.1074/jbc.M309184200

    Article  CAS  PubMed  Google Scholar 

  21. Ordureau A, Münch C, Harper JW (2015) Quantifying ubiquitin signaling. Mol Cell 58:660–676. https://doi.org/10.1016/j.molcel.2015.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kirkpatrick DS, Weldon SF, Tsaprailis G, Liebler DC, Gandolfi AJ (2005) Proteomic identification of ubiquitinated proteins from human cells expressing his-tagged ubiquitin. Proteomics 5:2104–2111. https://doi.org/10.1002/pmic.200401089

    Article  CAS  PubMed  Google Scholar 

  23. Ohtake F, Saeki Y, Sakamoto K et al (2015) Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Rep 16:192–201. https://doi.org/10.15252/embr.201439152

    Article  CAS  PubMed  Google Scholar 

  24. Cui J, Yao Q, Li S et al (2010) Glutamine deamidation and dysfunction of ubiquitin/nedd8 induced by a bacterial effector family. Science 329:1215–1218. https://doi.org/10.1126/science.1193844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qiu J, Sheedlo MJ, Yu K et al (2016) Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature 533:120–124. https://doi.org/10.1038/nature17657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bhogaraju S, Kalayil S, Liu Y et al (2016) Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell 167:1636–1649.e13. https://doi.org/10.1016/j.cell.2016.11.019

    Article  CAS  PubMed  Google Scholar 

  27. Ordureau A, Heo J-M, Duda DM et al (2015) Defining roles of parkin and ubiquitin phosphorylation by Pink1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc Natl Acad Sci U S A 112:6637–6642. https://doi.org/10.1073/pnas.1506593112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Erickson BK, Rose CM, Braun CR et al (2017) A strategy to combine sample multiplexing with targeted proteomics assays for high-throughput protein signature characterization. Mol Cell 65:361–370. https://doi.org/10.1016/j.molcel.2016.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seyfried NT, Xu P, Duong DM, Cheng D, Hanfelt J, Peng J (2008) Systematic approach for validating the ubiquitinated proteome. Anal Chem 80:4161–4169. https://doi.org/10.1021/ac702516a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dong KC, Helgason E, Yu C et al (2011) Preparation of distinct ubiquitin chain reagents of high purity and yield. Struct Lond Engl 1993(19):1053–1063. https://doi.org/10.1016/j.str.2011.06.010

    Article  CAS  Google Scholar 

  31. Bosanac I, Phu L, Pan B et al (2011) Modulation of K11-linkage formation by variable loop residues within UbcH5a. J Mol Biol 408:420–431. https://doi.org/10.1016/j.jmb.2011.03.011

    Article  CAS  PubMed  Google Scholar 

  32. Wickliffe KE, Lorenz S, Wemmer DE, Kuriyan J, Rape M (2011) The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell 144:769–781. https://doi.org/10.1016/j.cell.2011.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dynek JN, Goncharov T, Dueber EC et al (2010) C-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J 29:4198–4209. https://doi.org/10.1038/emboj.2010.300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goncharov T, Niessen K, de Almagro MC et al (2013) OTUB1 modulates c-IAP1 stability to regulate signalling pathways. EMBO J 32:1103–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Almagro MC, Goncharov T, Newton K, Vucic D (2015) Cellular IAP proteins and Lubac differentially regulate necrosome-associated RIP1 ubiquitination. Cell Death Dis 6:e1800. https://doi.org/10.1038/cddis.2015.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cunningham CN, Baughman JM, Phu L et al (2015) USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat Cell Biol 17:160–169. https://doi.org/10.1038/ncb3097

    Article  CAS  PubMed  Google Scholar 

  37. Ordureau A, Sarraf SA, Duda DM et al (2014) Quantitative proteomics reveal a feedforward mechanism for mitochondrial parkin translocation and ubiquitin chain synthesis. Mol Cell 56:360–375. https://doi.org/10.1016/j.molcel.2014.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

All authors are employees of Genentech Inc. and shareholders of the Roche group.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marissa L. Matsumoto or Donald S. Kirkpatrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Matsumoto, M.L., Castellanos, E.R., Zeng, Y.J., Kirkpatrick, D.S. (2018). Interpreting the Language of Polyubiquitin with Linkage-Specific Antibodies and Mass Spectrometry. In: Mayor, T., Kleiger, G. (eds) The Ubiquitin Proteasome System. Methods in Molecular Biology, vol 1844. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8706-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8706-1_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8705-4

  • Online ISBN: 978-1-4939-8706-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics