Skip to main content

Scalable In Vitro Proteasome Activity Assay

  • Protocol
  • First Online:
The Ubiquitin Proteasome System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1844))

Abstract

We developed a degradation assay based on fluorescent protein substrates that are efficiently recognized, unfolded, translocated, and hydrolyzed by the proteasome. The substrates consist of three components: a proteasome-binding tag, a folded domain, and an initiation region. All the components of the model substrate can be changed to modulate degradation, and the assay can be performed in parallel in 384-well plates. These properties allow the assay to be used to explore a wide range of experimental conditions and to screen proteasome modulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumeister W, Walz J, Zuhl F et al (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367–380. https://doi.org/10.1016/S0092-8674(00)80929-0

    Article  CAS  PubMed  Google Scholar 

  2. Finley D, Chen X, Walters KJ (2016) Gates, channels, and switches: elements of the proteasome machine. Trends Biochem Sci 41:77–93. https://doi.org/10.1016/j.tibs.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  3. Beck F, Unverdorben P, Bohn S et al (2012) Near-atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci U S A 109:14870–14875. https://doi.org/10.1073/pnas.1213333109

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lander GC, Estrin E, Matyskiela ME et al (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482:186–191. https://doi.org/10.1038/nature10774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Groll M, Bajorek M, Köhler A et al (2000) A gated channel into the proteasome core particle. Nat Struct Mol Biol 7:1062–1067. https://doi.org/10.1038/80992

    Article  CAS  Google Scholar 

  6. Groll M, Ditzel L, Löwe J et al (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386:463–471. https://doi.org/10.1038/386463a0

    Article  CAS  PubMed  Google Scholar 

  7. Bhattacharyya S, Yu H, Mim C, Matouschek A (2014) Regulated protein turnover: snapshots of the proteasome in action. Nat Rev Mol Cell Biol 15:122–133. https://doi.org/10.1038/nrm3741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hershko A, Ciechanover A (2003) The ubiquitin system. Annu Rev Biochem 67:425–479. https://doi.org/10.1146/annurev.biochem.67.1.425

    Article  Google Scholar 

  9. DeMartino GN, Gillette TG (2007) Proteasomes: machines for all reasons. Cell 129:659–662. https://doi.org/10.1016/j.cell.2007.05.007

    Article  CAS  PubMed  Google Scholar 

  10. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428. https://doi.org/10.1152/physrev.00027.2001

    Article  CAS  Google Scholar 

  11. Wolf DH, Hilt W (2004) The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta 1695:19–31. https://doi.org/10.1016/j.bbamcr.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  12. Suraweera A, Münch C, Hanssum A, Bertolotti A (2012) Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol Cell 48(2):242–253. https://doi.org/10.1016/j.molcel.2012.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goldberg AL, Rock KL (1992) Proteolysis, proteasomes and antigen presentation. Nature 357:375–379. https://doi.org/10.1038/357375a0

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt M, Finley D (2014) Regulation of proteasome activity in health and disease. Biochim Biophys Acta 1843:13–25. https://doi.org/10.1016/j.bbamcr.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  15. Dantuma NP, Bott LC (2014) The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front Mol Neurosci 7:1345. https://doi.org/10.3389/fnmol.2014.00070

    Article  CAS  Google Scholar 

  16. Powell SR, Herrmann J, Lerman A et al (2012) The ubiquitin–proteasome system and cardiovascular disease. In: The proteasomal system in aging and disease. Elsevier, Amsterdam, pp 295–346

    Chapter  Google Scholar 

  17. Cromm PM, Crews CM (2017) The proteasome in modern drug discovery: second life of a highly valuable drug target. ACS Cent Sci 3:830–838. https://doi.org/10.1021/acscentsci.7b00252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shah JJ, Orlowski RZ (2009) Proteasome inhibitors in the treatment of multiple myeloma. Leukemia 23:1964–1979. https://doi.org/10.1038/leu.2009.173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liggett A, Crawford LJ, walker B et al (2010) Methods for measuring proteasome activity: current limitations and future developments. Leuk Res 34:1403–1409. https://doi.org/10.1016/j.leukres.2010.07.003

    Article  CAS  PubMed  Google Scholar 

  20. Kisselev AF, Goldberg AL (2005) Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. Meth Enzymol 398:364–378. https://doi.org/10.1016/S0076-6879(05)98030-0

    Article  CAS  PubMed  Google Scholar 

  21. Saeki Y, Isono E, Toh-E A (2005) Preparation of ubiquitinated substrates by the PY motif-insertion method for monitoring 26S proteasome activity. Meth Enzymol 399:215–227. https://doi.org/10.1016/S0076-6879(05)99014-9

    Article  CAS  PubMed  Google Scholar 

  22. Martinez-Fonts K, Matouschek A (2016) A rapid and versatile method for generating proteins with defined ubiquitin chains. Biochemistry 55:1898–1908. https://doi.org/10.1021/acs.biochem.5b01310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prakash S, Tian L, Ratliff KS et al (2004) An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat Struct Mol Biol 11:830–837. https://doi.org/10.1038/nsmb814

    Article  CAS  PubMed  Google Scholar 

  24. Singh Gautam AK, Balakrishnan S, Venkatraman P (2012) Direct ubiquitin independent recognition and degradation of a folded protein by the eukaryotic proteasomes-origin of intrinsic degradation signals. PLoS One 7:e34864–e34814. https://doi.org/10.1371/journal.pone.0034864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Y, Tomko RJ, Hochstrasser M (2015) Proteasomes: isolation and activity assays. Curr Protoc Cell Biol 4:3.43.1–3.43.20. https://doi.org/10.1002/0471143030.cb0343s67

    Article  Google Scholar 

  26. Verma R, McDonald H, Yates JR, Deshaies RJ (2001) Selective degradation of ubiquitinated Sic1 by purified 26S proteasome yields active S phase cyclin-Cdk. Mol Cell 8:439–448

    Article  CAS  Google Scholar 

  27. Hanna J, Hathaway NA, Tone Y et al (2006) Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127:99–111. https://doi.org/10.1016/j.cell.2006.07.038

    Article  CAS  PubMed  Google Scholar 

  28. Kraut DA, Israeli E, Schrader EK et al (2012) Sequence- and species-dependence of proteasomal processivity. ACS Chem Biol 7:1444–1453. https://doi.org/10.1021/cb3001155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tian L, Holmgren RA, Matouschek A (2005) A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-κB. Nat Struct Mol Biol 12:1045–1053. https://doi.org/10.1038/nsmb1018

    Article  CAS  PubMed  Google Scholar 

  30. Schrader EK, Harstad KG, Holmgren RA, Matouschek A (2011) A three-part signal governs differential processing of Gli1 and Gli3 proteins by the proteasome. J Biol Chem 286:39051–39058. https://doi.org/10.1074/jbc.M111.274993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu H, Singh Gautam AK, Wilmington SR et al (2016) Conserved sequence preferences contribute to substrate recognition by the proteasome. J Biol Chem 291:14526–14539. https://doi.org/10.1074/jbc.M116.727578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilmington SR, Matouschek A (2016) An inducible system for rapid degradation of specific cellular proteins using proteasome adaptors. PLoS One 11:e0152679–e0152616. https://doi.org/10.1371/journal.pone.0152679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu H, Kago G, Yellman CM, Matouschek A (2016) Ubiquitin-like domains can target to the proteasome but proteolysis requires a disordered region. EMBO J 35:1522–1536. https://doi.org/10.15252/embj.201593147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beckwith R, Estrin E, Worden EJ, Martin A (2013) Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat Publ Group 20:1164–1172. https://doi.org/10.1038/nsmb.2659

    Article  CAS  Google Scholar 

  35. Neefjes J, Dantuma NP (2004) Fluorescent probes for proteolysis: tools for drug discovery. Nat Rev Drug Discov 3:58–69. https://doi.org/10.1038/nrd1282

    Article  CAS  PubMed  Google Scholar 

  36. Bhattacharyya S, Renn JP, Yu H et al (2016) An assay for 26S proteasome activity based on fluorescence anisotropy measurements of dye-labeled protein substrates. Anal Biochem 509:50–59. https://doi.org/10.1016/j.ab.2016.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stack JH, Whitney M, Rodems SM, Pollok BA (2000) A ubiquitin-based tagging system for controlled modulation of protein stability. Nat Biotechnol 18:1298–1302. https://doi.org/10.1038/82422

    Article  CAS  PubMed  Google Scholar 

  38. Fishbain S, Prakash S, Herrig A et al (2011) Rad23 escapes degradation because it lacks a proteasome initiation region. Nat Commun 2:192–199. https://doi.org/10.1038/ncomms1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sone T, Saeki Y, Toh-e A, Yokosawa H (2004) Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae. J Biol Chem 279:28807–28816. https://doi.org/10.1074/jbc.M403165200

    Article  CAS  PubMed  Google Scholar 

  40. Inobe T, Fishbain S, Prakash S, Matouschek A (2011) Defining the geometry of the two-component proteasome degron. Nat Chem Biol 7:161–167. https://doi.org/10.1038/nchembio.521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19:94–102. https://doi.org/10.1093/emboj/19.1.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nager AR, Baker TA, Sauer RT (2011) Stepwise unfolding of a β barrel protein by the AAA+ ClpXP protease. J Mol Biol 413:4–16. https://doi.org/10.1016/j.jmb.2011.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fishbain S, Inobe T, Israeli E et al (2015) Sequence composition of disordered regions fine-tunes protein half-life. Nat Struct Mol Biol 22:214–221. https://doi.org/10.1038/nsmb.2958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fischer M, Hilt W, Richter-Ruoff B et al (1994) The 26S proteasome of the yeast Saccharomyces cerevisiae. FEBS Lett 355:69–75. https://doi.org/10.1016/0014-5793(94)01177-X

    Article  CAS  PubMed  Google Scholar 

  45. Ostuka Y, Homma N, Shiga K et al (1998) Purification and properties of rabbit muscle proteasome, and its effect on myofibrillar structure. Meat Sci 49:365–378. https://doi.org/10.1016/S0309-1740(97)00141-1

    Article  Google Scholar 

  46. Yang P (2003) Purification of the Arabidopsis 26 S proteasome: biochemical and molecular analyses revealed the presence of multiple isoforms. J Biol Chem 279:6401–6413. https://doi.org/10.1074/jbc.M311977200

    Article  CAS  PubMed  Google Scholar 

  47. DeMartino GN, Proske RJ, Moomaw CR et al (1996) Identification, purification, and characterization of a PA700-dependent activator of the proteasome. J Biol Chem 271:3112–3118. https://doi.org/10.1074/jbc.271.6.3112

    Article  CAS  PubMed  Google Scholar 

  48. Hirano Y, Murata S, Tanaka K (2005) Large- and small-scale purification of mammalian 26S proteasomes. Meth Enzymol 399:227–240. https://doi.org/10.1016/S0076-6879(05)99015-0

    Article  CAS  PubMed  Google Scholar 

  49. Besche HC, Goldberg AL (2012) Affinity purification of mammalian 26S proteasomes using an ubiquitin-like domain. In: cDNA Libraries. Humana Press, Totowa, NJ, pp 423–432

    Google Scholar 

  50. Besche HC, Haas W, Gygi SP, Goldberg AL (2009) Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins. Biochemistry 48:2538–2549. https://doi.org/10.1021/bi802198q

    Article  CAS  PubMed  Google Scholar 

  51. Leggett DS, Hanna J, Borodovsky A et al (2002) Multiple associated proteins regulate proteasome structure and function. Mol Cell 10:495–507

    Article  CAS  Google Scholar 

  52. Leggett DS, Glickman MH, Finley D (2005) Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast. Methods Mol Biol 301:57–70. https://doi.org/10.1385/1-59259-895-1:057

    Article  CAS  PubMed  Google Scholar 

  53. Verma R, Chen S, Feldman R et al (2000) Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell 11:3425–3439

    Article  CAS  Google Scholar 

  54. Elsasser S, Schmidt M, Finley D (2005) Characterization of the proteasome using native gel electrophoresis. Meth Enzymol 398:353–363. https://doi.org/10.1016/S0076-6879(05)98029-4

    Article  CAS  PubMed  Google Scholar 

  55. Peth A, Kukushkin N, Bossé M, Goldberg AL (2013) Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs. J Biol Chem 288:7781–7790. https://doi.org/10.1074/jbc.M112.441907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Benaroudj N, Zwickl P, Seemuller E et al (2003) ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol Cell 11:69–78. https://doi.org/10.1016/S1097-2765(02)00775-X

    Article  CAS  PubMed  Google Scholar 

  57. Takahashi K, Matouschek A, Inobe T (2015) Regulation of proteasomal degradation by modulating proteasomal initiation regions. ACS Chem Biol 10:2537–2543. https://doi.org/10.1021/acschembio.5b00554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Johnson KA (2009) Fitting enzyme kinetic data with KinTek Global Kinetic Explorer. Meth Enzymol 467:601–626. https://doi.org/10.1016/S0076-6879(09)67023-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by U54 GM105816, R21 CA191664, R21 CA196456, and R01 GM124501 from the National Institutes of Health; RP140328 from the Cancer Prevention and Research Institute of Texas (CPRIT); and F-1817 from the Welch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Matouschek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Singh Gautam, A.K., Martinez-Fonts, K., Matouschek, A. (2018). Scalable In Vitro Proteasome Activity Assay. In: Mayor, T., Kleiger, G. (eds) The Ubiquitin Proteasome System. Methods in Molecular Biology, vol 1844. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8706-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8706-1_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8705-4

  • Online ISBN: 978-1-4939-8706-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics