Skip to main content

CRAC Channel Components Quantitative Expression (In Tissues and Cell Lines) Using qPCR

  • Protocol
  • First Online:
The CRAC Channel

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1843))

  • 599 Accesses

Abstract

Since last decade real-time qPCR has become a routine and robust approach for measuring the expression of genes of interest. Indeed, using qPCR, expression profile analyses are now possible and participate to the understanding of physiological or pathological role of channels such as calcium release-activated channels (CRAC). Initially discovered in lymphocyte T and immunity perturbations, recent studies have highlighted the role of CRAC channels in other pathologies such as cancer. Here we describe a protocol to quantify CRAC components expression, in tissue sample and cell lines, to validate knockdown strategies or identify their roles in physiological and pathological conditions (Hoth and Penner, J Physiol 465:359–386, 1993; Hoth and Penner, Nature 355:353–356, 1992; and Zweifach and Lewis, Proc Natl Acad Sci U S A 90:6295–6299, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoth M, Penner R (1993) Calcium release-activated calcium current in rat mast cells. J Physiol 465:359–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356

    Article  CAS  PubMed  Google Scholar 

  3. Zweifach A, Lewis RS (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci U S A 90:6295–6299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Srikanth S, Gwack Y (2013) Orai1-NFAT signalling pathway triggered by T cell receptor stimulation. Mol Cells 35:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Prakriya M, Lewis RS (2006) Regulation of CRAC channel activity by recruitment of silent channels to a high open-probability gating mode. J Gen Physiol 128:373–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vig M, Beck A, Billingsley JM et al (2006) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16:2073–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yeromin AV, Zhang SL, Jiang W et al (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Flourakis M, Lehen’kyi V, Beck B et al (2010) Orai1 contributes to the establishment of an apoptosis-resistant phenotype in prostate cancer cells. Cell Death Dis 1:e75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Motiani RK, Hyzinski-García MC, Zhang X et al (2013) STIM1 and Orai1 mediate CRAC channel activity and are essential for human glioblastoma invasion. Pflüg Arch 465:1249–1260

    Article  CAS  Google Scholar 

  10. Daskoulidou N, Zeng B, Berglund LM et al (2015) High glucose enhances store-operated calcium entry by upregulating ORAI/STIM via calcineurin-NFAT signalling. J Mol Med (Berl) 93:511–521

    Article  CAS  Google Scholar 

  11. Wang J-Y, Sun J, Huang M-Y et al (2015) STIM1 overexpression promotes colorectal cancer progression, cell motility and COX-2 expression. Oncogene 34:4358–4367

    Article  CAS  PubMed  Google Scholar 

  12. Dubois C, Vanden Abeele F, Lehen’kyi V et al (2014) Remodeling of channel-forming ORAI proteins determines an oncogenic switch in prostate cancer. Cancer Cell 26:19–32

    Article  CAS  PubMed  Google Scholar 

  13. Qu W, Zhou Y, Zhang Y et al (2012) MFEprimer-2.0: a fast thermodynamics-based program for checking PCR primer specificity. Nucleic Acids Res 40:W205–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Untergasser A, Nijveen H, Rao X et al (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yoon H, Leitner T (2015) PrimerDesign-M: a multiple-alignment based multiple-primer design tool for walking across variable genomes. Bioinformatics 31:1472–1474

    Article  CAS  PubMed  Google Scholar 

  16. Lefever S, Vandesompele J, Speleman F et al (2009) RTPrimerDB: the portal for real-time PCR primers and probes. Nucleic Acids Res 37:D942–D945

    Article  CAS  PubMed  Google Scholar 

  17. Kozera B, Rapacz M (2013) Reference genes in real-time PCR. J Appl Genet 54:391–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tyburski J, Studzinska A, Daca P et al (2008) PCR in real time. The methods of data analysis. Biotechnologia 1:86–96

    Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  20. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Prevarskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dubois, C., Lehenkyi, V., Prevarskaya, N. (2018). CRAC Channel Components Quantitative Expression (In Tissues and Cell Lines) Using qPCR. In: Penna, A., Constantin, B. (eds) The CRAC Channel. Methods in Molecular Biology, vol 1843. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8704-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8704-7_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8702-3

  • Online ISBN: 978-1-4939-8704-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics