Skip to main content

Engineered Cross-Linking to Study the Pore Architecture of the CRAC Channel

  • Protocol
  • First Online:
The CRAC Channel

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1843))

Abstract

ORAI1 constitutes the pore-forming subunit of the calcium release-activated calcium (CRAC) channel, a prototypical store-operated channel that is essential for the activation of cells of the immune system. Here we describe a convenient yet powerful cross-linking approach to examine the pore architecture of CRAC channels using ORAI1 proteins engineered to contain one or two cysteine residues. The generalizable cross-linking in situ approach can also be readily extended to study other integral membrane proteins expressed in various types of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    Article  CAS  PubMed  Google Scholar 

  2. Carrasco S, Meyer T (2011) STIM proteins and the endoplasmic reticulum-plasma membrane junctions. Annu Rev Biochem 80:973–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356

    Article  CAS  PubMed  Google Scholar 

  5. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  CAS  PubMed  Google Scholar 

  6. Soboloff J, Rothberg BS, Madesh M et al (2012) STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 13:549–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zweifach A, Lewis RS (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci U S A 90:6295–6299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liou J, Kim ML, Heo WD et al (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roos J, DiGregorio PJ, Yeromin AV et al (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang SL, Yu Y, Roos J et al (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feske S, Gwack Y, Prakriya M et al (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  CAS  PubMed  Google Scholar 

  12. Vig M, Peinelt C, Beck A et al (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang SL, Yeromin AV, Zhang XH et al (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci U S A 103:9357–9362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yeromin AV, Zhang SL, Jiang W et al (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou Y, Srinivasan P, Razavi S et al (2013) Initial activation of STIM1, the regulator of store-operated calcium entry. Nat Struct Mol Biol 20:973–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yuan JP, Zeng W, Dorwart MR et al (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11:337–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Park CY, Hoover PJ, Mullins FM et al (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136:876–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Muik M, Fahrner M, Derler I et al (2009) A cytosolic homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. J Biol Chem 284:8421–8426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawasaki T, Lange I, Feske S (2009) A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem Biophys Res Commun 385:49–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou Y, Meraner P, Kwon HT et al (2010) STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat Struct Mol Biol 17:112–116

    Article  CAS  PubMed  Google Scholar 

  21. Gudlur A, Zhou Y, Hogan PG (2013) STIM-ORAI interactions that control the CRAC channel. Curr Top Membr 71:33–58

    Article  CAS  PubMed  Google Scholar 

  22. Picard C, McCarl CA, Papolos A et al (2009) STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 360:1971–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Feske S (2007) Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7:690–702

    Article  CAS  PubMed  Google Scholar 

  24. Feske S (2009) ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 231:189–209

    Article  CAS  PubMed  Google Scholar 

  25. McCarl CA, Picard C, Khalil S et al (2009) ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J Allergy Clin Immunol 124:1311–1318.e1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feske S (2010) CRAC channelopathies. Pflugers Arch 460:417–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Parekh AB (2010) Store-operated CRAC channels: function in health and disease. Nat Rev Drug Discov 9:399–410

    Article  CAS  PubMed  Google Scholar 

  28. Naesens M, Kuypers DR, Sarwal M (2009) Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol 4:481–508

    PubMed  CAS  Google Scholar 

  29. Zhou Y, Ramachandran S, Oh-Hora M et al (2010) Pore architecture of the ORAI1 store-operated calcium channel. Proc Natl Acad Sci U S A 107:4896–4901

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kobe B, Guncar G, Buchholz R et al (2008) Crystallography and protein-protein interactions: biological interfaces and crystal contacts. Biochem Soc Trans 36:1438–1441

    Article  CAS  PubMed  Google Scholar 

  31. Muller G (2000) Towards 3D structures of G protein-coupled receptors: a multidisciplinary approach. Curr Med Chem 7:861–888

    Article  CAS  PubMed  Google Scholar 

  32. Opella SJ (2013) Structure determination of membrane proteins by nuclear magnetic resonance spectroscopy. Annu Rev Anal Chem (Palo Alto, Calif) 6:305–328

    Article  CAS  Google Scholar 

  33. Muller H, Etzkorn M, Heise H (2013) Solid-state NMR spectroscopy of proteins. Top Curr Chem 335:121–156

    Article  CAS  PubMed  Google Scholar 

  34. Goldbourt A (2013) Biomolecular magic-angle spinning solid-state NMR: recent methods and applications. Curr Opin Biotechnol 24:705–715

    Article  CAS  PubMed  Google Scholar 

  35. Kim LY, Johnson MC, Schmidt-Krey I (2012) Cryo-EM in the study of membrane transport proteins. Compr Physiol 2:283–293

    PubMed  Google Scholar 

  36. Wisedchaisri G, Reichow SL, Gonen T (2011) Advances in structural and functional analysis of membrane proteins by electron crystallography. Structure 19:1381–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fujiyoshi Y (2011) Electron crystallography for structural and functional studies of membrane proteins. J Electron Microsc 60(Suppl 1):S149–S159

    CAS  Google Scholar 

  38. McNally BA, Yamashita M, Engh A et al (2009) Structural determinants of ion permeation in CRAC channels. Proc Natl Acad Sci U S A 106:22516–22521

    Article  PubMed  PubMed Central  Google Scholar 

  39. Falke JJ, Koshland DE Jr (1987) Global flexibility in a sensory receptor: a site-directed cross-linking approach. Science 237:1596–1600

    Article  CAS  PubMed  Google Scholar 

  40. Falke JJ, Dernburg AF, Sternberg DA et al (1988) Structure of a bacterial sensory receptor. A site-directed sulfhydryl study. J Biol Chem 263:14850–14858

    PubMed  CAS  Google Scholar 

  41. Pakula AA, Simon MI (1992) Determination of transmembrane protein structure by disulfide cross-linking: the Escherichia coli Tar receptor. Proc Natl Acad Sci U S A 89:4144–4148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu J, Hu K, Liu T et al (2013) Novel structural and functional insights into m3 muscarinic receptor dimer/oligomer formation. J Biol Chem 288:34777–34790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Umanah GK, Huang LY, Maccarone JM et al (2011) Changes in conformation at the cytoplasmic ends of the fifth and sixth transmembrane helices of a yeast G protein-coupled receptor in response to ligand binding. Biochemistry 50:6841–6854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ward SD, Hamdan FF, Bloodworth LM et al (2006) Use of an in situ disulfide cross-linking strategy to study the dynamic properties of the cytoplasmic end of transmembrane domain VI of the M3 muscarinic acetylcholine receptor. Biochemistry 45:676–685

    Article  CAS  PubMed  Google Scholar 

  45. Li JH, Hamdan FF, Kim SK et al (2008) Ligand-specific changes in M3 muscarinic acetylcholine receptor structure detected by a disulfide scanning strategy. Biochemistry 47:2776–2788

    Article  CAS  PubMed  Google Scholar 

  46. Jiang J, Shrivastava IH, Watts SD et al (2011) Large collective motions regulate the functional properties of glutamate transporter trimers. Proc Natl Acad Sci U S A 108:15141–15146

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang XY, Lloubes R, Duche D (2010) Channel domain of colicin A modifies the dimeric organization of its immunity protein. J Biol Chem 285:38053–38061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu C, Mi LZ, Grey MJ et al (2010) Structural evidence for loose linkage between ligand binding and kinase activation in the epidermal growth factor receptor. Mol Cell Biol 30:5432–5443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lvov A, Gage SD, Berrios VM et al (2010) Identification of a protein-protein interaction between KCNE1 and the activation gate machinery of KCNQ1. J Gen Physiol 135:607–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu G, Niu X, Wu RS et al (2010) Location of modulatory beta subunits in BK potassium channels. J Gen Physiol 135:449–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Soetandyo N, Wang Q, Ye Y et al (2010) Role of intramembrane charged residues in the quality control of unassembled T-cell receptor alpha-chains at the endoplasmic reticulum. J Cell Sci 123:1031–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kornilova AY, Kim J, Laudon H et al (2006) Deducing the transmembrane domain organization of presenilin-1 in gamma-secretase by cysteine disulfide cross-linking. Biochemistry 45:7598–7604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. DeLeon-Rangel J, Ishmukhametov RR, Jiang W et al (2013) Interactions between subunits a and b in the rotary ATP synthase as determined by cross-linking. FEBS Lett 587:892–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mudiyanselage AP, Yang M, Accomando LA et al (2013) Membrane association of a protein increases the rate, extent, and specificity of chemical cross-linking. Biochemistry 52:6127–6136

    Article  CAS  PubMed  Google Scholar 

  55. Zhu L, Kaback HR, Dalbey RE (2013) YidC protein, a molecular chaperone for LacY protein folding via the SecYEG protein machinery. J Biol Chem 288:28180–28194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dabney-Smith C, Cline K (2009) Clustering of C-terminal stromal domains of Tha4 homo-oligomers during translocation by the Tat protein transport system. Mol Biol Cell 20:2060–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Punginelli C, Maldonado B, Grahl S et al (2007) Cysteine scanning mutagenesis and topological mapping of the Escherichia coli twin-arginine translocase TatC component. J Bacteriol 189:5482–5494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee PA, Orriss GL, Buchanan G et al (2006) Cysteine-scanning mutagenesis and disulfide mapping studies of the conserved domain of the twin-arginine translocase TatB component. J Biol Chem 281:34072–34085

    Article  CAS  PubMed  Google Scholar 

  59. Janowiak BE, Jennings-Antipov LD, Collier RJ (2011) Cys-Cys cross-linking shows contact between the N-terminus of lethal factor and Phe427 of the anthrax toxin pore. Biochemistry 50:3512–3516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kobashi K (1968) Catalytic oxidation of sulfhydryl groups by o-phenanthroline copper complex. Biochim Biophys Acta 158:239–245

    Article  CAS  PubMed  Google Scholar 

  61. Simonsen DG (1933) The oxidation of cysteine with iodine: formation of a sulfinic acid. J Biol Chem 101:35–42

    CAS  Google Scholar 

  62. Hou X, Pedi L, Diver MM et al (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338:1308–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the financial supports from the National Institutes of Health grant (R01GM112003, R21GM126532 and R01HL134780), the Welch Foundation (BE-1913), the American Cancer Society (RSG-16-215-01 TBE), the Cancer Prevention and Research Institute of Texas (RR140053), the American Heart Association (16IRG27250155), and the John S. Dunn Foundation and by an allocation from the Texas A&M University Health Science Center Startup Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubin Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ma, G., He, L., Jing, J., Tan, P., Huang, Y., Zhou, Y. (2018). Engineered Cross-Linking to Study the Pore Architecture of the CRAC Channel. In: Penna, A., Constantin, B. (eds) The CRAC Channel. Methods in Molecular Biology, vol 1843. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8704-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8704-7_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8702-3

  • Online ISBN: 978-1-4939-8704-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics