Skip to main content

Store-Operated Ca2+ Entry in Drosophila Primary Neuronal Cultures

  • Protocol
  • First Online:
The CRAC Channel

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1843))

Abstract

Intracellular calcium signals in neurons frequently derive from the stimulation of G protein-coupled receptors (GPCR) by neurotransmitters, neuropeptides, and neurohormones. GPCR stimulation in neurons leads to generation of inositol 1,4,5-trisphosphate (IP3), which in turn activates endoplasmic reticulum (ER)-localized IP3 receptors. The IP3 receptor (IP3R) is a ligand-gated Ca2+ channel, which releases Ca2+ from ER stores. In Drosophila neurons it has been shown that depletion of ER Ca2+ store is followed by store-operated Ca2+ entry (SOCE) through STIM and Orai, the ER Ca2+ sensor and the plasma membrane Ca2+ channel respectively. The elucidation of this Ca2+ signaling pathway in neurons has in part been possible due to the ease of genetic manipulation in Drosophila, which has allowed neuron-specific knockdown of various proteins of interest. This has been followed by standardization of conditions for culturing neurons from dissected brains of the relevant genotypes, such that they could be used for robust Ca2+ measurements by imaging with standard Ca2+ indicator dyes. Protocols for measurement of IP3-mediated Ca2+ release, passive depletion of ER Ca2+ store, and SOCE in primary cultures of Drosophila neurons are described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saito M, Wu CF (1991) Expression of ion channels and mutational effects in giant Drosophila neurons differentiated from cell division-arrested embryonic neuroblasts. J Neurosci 11(7):2135–2150

    Article  CAS  PubMed  Google Scholar 

  2. Wu CF, Sakai K, Saito M, Hotta Y (1990) Giant Drosophila neurons differentiated from cytokinesis-arrested embryonic neuroblasts. J Neurobiol 21(3):499–507

    Article  CAS  PubMed  Google Scholar 

  3. Seecof RL, Unanue RL (1968) Differentiation of embryonic Drosophila cells in vitro. Exp Cell Res 50(3):654–660

    Article  CAS  PubMed  Google Scholar 

  4. Shields G, Sang JH (1970) Characteristics of five cell types appearing during in vitro culture of embryonic material from Drosophila melanogaster. J Embryol Exp Morphol 23(1):53–69

    PubMed  CAS  Google Scholar 

  5. Savakis C, Demetri G, Cherbas P (1980) Ecdysteroid-inducible polypeptides in a Drosophila cell line. Cell 22(3):665–674

    Article  CAS  PubMed  Google Scholar 

  6. Sang JH (1981) Drosophila cells and cell lines. In: Maramorosch K (ed) Advances in cell culture, vol 1. Academic Press, Inc., New York, pp 125–182

    Google Scholar 

  7. Moscona A (1961) Rotation-mediated histogenetic aggregation of dissociated cells. A quantifiable approach to cell interactions in vitro. Exp Cell Res 22:455–475

    Article  CAS  PubMed  Google Scholar 

  8. Wu CF, Suzuki N, Poo MM (1983) Dissociated neurons from normal and mutant Drosophila larval central nervous system in cell culture. J Neurosci 3(9):1888–1899

    Article  CAS  PubMed  Google Scholar 

  9. Schneider I (1964) Differentiation of larval Drosophila eye-antennal discs in vitro. J Exp Zool 156:91–103

    Article  CAS  PubMed  Google Scholar 

  10. Schneider I, Blumenthal AB (1978) Drosophila cell and tissue culture. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol IIa. Academic Press, Inc., New York, pp 265–315

    Google Scholar 

  11. Banerjee S et al (2006) Compensation of inositol 1,4,5-trisphosphate receptor function by altering sarco-endoplasmic reticulum calcium ATPase activity in the Drosophila flight circuit. J Neurosci 26(32):8278–8288

    Article  CAS  PubMed  Google Scholar 

  12. Venkiteswaran G, Hasan G (2009) Intracellular Ca2+ signaling and store-operated Ca2+ entry are required in Drosophila neurons for flight. Proc Natl Acad Sci U S A 106(25):10326–10331

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chakraborty S, Hasan G (2012) Functional complementation of Drosophila itpr mutants by rat Itpr1. J Neurogenet 26(3–4):328–337

    Article  CAS  PubMed  Google Scholar 

  14. Chakraborty S et al (2016) Mutant IP3 receptors attenuate store-operated Ca2+ entry by destabilizing STIM–Orai interactions in Drosophila neurons. J Cell Sci 15; 129(20):3903–3910

    Google Scholar 

  15. Bird GS, DeHaven WI, Smyth JT, Putney JW (2008) Methods for studying store-operated calcium entry. Methods 46(3):204–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Akerboom J et al (2009) Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J Biol Chem 284(10):6455–6464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tian L et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6(12):875–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Phelps CB, Brand AH (1998) Ectopic gene expression in Drosophila using GAL4 system. Methods 14(4):367–379

    Article  CAS  PubMed  Google Scholar 

  20. Akerboom J et al (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wachowiak M et al (2013) Optical dissection of odor information processing in vivo using GCaMPs expressed in specified cell types of the olfactory bulb. J Neurosci 33(12):5285–5300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hong JH, Min CH, Jeong B, Kojiya T, Morioka E, Nagai T, Ikeda M, Lee KJ (2009)(2010) Intracellular calcium spikes in rat suprachiasmatic nucleus neurons induced by BAPTA-based calcium dyes. PLoS One 5(3):e9634. https://doi.org/10.1371/journal.pone.0009634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Jiang SA, Campusano JM, Su H, O’Dowd DK (2005) Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels. J Neurophysiol 94(1):491–500

    Article  CAS  PubMed  Google Scholar 

  24. Sicaeros B, Campusano JM, O’Dowd DK (2007) Primary neuronal cultures from the brains of late stage Drosophila pupae. J Vis Exp 4:200

    Google Scholar 

  25. Chakraborty S and Hasan G (2017) Spontaneous Ca2+ Influx in Drosophila Pupal Neurons Is Modulated by IP3-Receptor Function and Influences Maturation of the Flight Circuit. Front Mol Neurosci 10:111.

    Google Scholar 

  26. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    PubMed  CAS  Google Scholar 

  27. Hardie RC (1996) INDO-1 measurements of absolute resting and light-induced Ca2+ concentration in Drosophila photoreceptors. J Neurosci 16(9):2924–2933

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaiti Hasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chakraborty, S., Hasan, G. (2018). Store-Operated Ca2+ Entry in Drosophila Primary Neuronal Cultures. In: Penna, A., Constantin, B. (eds) The CRAC Channel. Methods in Molecular Biology, vol 1843. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8704-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8704-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8702-3

  • Online ISBN: 978-1-4939-8704-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics