Skip to main content

Centrifugation-Based Enrichment of Bacterial Cell Populations for Metaproteomic Studies on Bacteria–Invertebrate Symbioses

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1841))

Abstract

Owing to high sample complexity, metaproteomic investigations on bacteria–animal symbioses with two or more uncultured partners can be challenging. A selective isolation or enrichment of distinct (sub-)populations within those consortia can solve this problem. Subsequent discrete proteomic analyses benefit from increased sample purity and higher proteome coverage for each of the individual organisms. Here, we describe centrifugation-based methods that allow for a separation of the host and its bacterial symbiont population(s), or even for an enrichment of distinct symbiotic cell cycle stages in the deep-sea mussels Bathymodiolus azoricus and B. thermophilus, the gutless oligochaete Olavius algarvensis and the deep-sea tube worm Riftia pachyptila, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kleiner M, Wentrup C, Lott C et al (2012) Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use. Proc Natl Acad Sci U S A 109:E1173–E1182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bright M, Sorgo A (2003) Ultrastructural reinvestigation of the trophosome in adults of Riftia pachyptila (Annelida, Siboglinidae). Invertebr Biol 122:345–366

    Google Scholar 

  3. Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3:reviews0003.1–reviews0003.8

    Article  Google Scholar 

  4. Hinton R, Dobrota M (1976) Density gradient centrifugation. Elsevier/North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  5. Sharpe PT (1988) Chapter 3: Centrifugation. In: Methods of cell separation. Elsevier Science Publishers B.V. (Biomedical Division), Amsterdam

    Google Scholar 

  6. Graham J (2001) Biological centrifugation. BIOS Scientific Publishers Limited, Oxford

    Google Scholar 

  7. Hinton RH, Mullock BM (1997) Isolation of subcellular fractions. In: Graham JM, Rickwood D (eds) Subcellular fractionation: a practical approach. The practical approach series. Oxford University Press, Oxford, pp 31–69

    Google Scholar 

  8. Spragg SP, Steensgaard J (1992) Theoretical aspects of practical centrifugation. In: Rickwood D (ed) Preparative centrifugation: a practical approach. The practical approach series. Oxford University Press, Oxford, pp 1–42

    Google Scholar 

  9. Dobrota M, Hinton R (1992) Conditions for density gradient separations. In: Rickwood D (ed) Preparative centrifugation: a practical approach. The practical approach series. Oxford University Press, Oxford, pp 77–142

    Google Scholar 

  10. Evans WH (1992) Isolation and characterization of membranes and cell organelles. In: Rickwood D (ed) Preparative centrifugation: a practical approach. The practical approach series. Oxford University Press, Oxford, pp 233–270

    Google Scholar 

  11. Brakke MK (1951) Density gradient centrifugation: a new separation technique. J Am Chem Soc 73:1847–1848

    Article  CAS  Google Scholar 

  12. Pertoft H (2000) Fractionation of cells and subcellular particles with Percoll. J Biochem Biophys Methods 44:1–30

    Article  CAS  PubMed  Google Scholar 

  13. Distel DL, Felbeck H (1988) Pathways of inorganic carbon fixation in the endosymbiont-bearing lucinid clam Lucinoma aequizonata. Part 1. Purification and characterization of the endosymbiotic bacteria. J Exp Zool 247:1–10

    Article  CAS  Google Scholar 

  14. Markert S, Arndt C, Felbeck H et al (2007) Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science 315:247–250. https://doi.org/10.1126/science.1132913

    Article  CAS  PubMed  Google Scholar 

  15. Markert S, Gardebrecht A, Felbeck H et al (2011) Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont. Proteomics 11:3106–3117

    Article  CAS  PubMed  Google Scholar 

  16. Ponnudurai R, Kleiner M, Sayavedra L et al (2017) Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis. ISME J 11:463–477

    Article  CAS  PubMed  Google Scholar 

  17. Graham JM (1997) Homogenization of tissues and cells. In: Graham JM, Rickwood D (eds) Subcellular fractionation: a practical approach. The practical approach series. Oxford University Press, Oxford, pp 1–29

    Google Scholar 

Download references

Acknowledgments

We thank Horst Felbeck for valuable help with sample preparation, Ruby Ponnudurai for data collection and analysis, and Thomas Schweder for helpful input. This work was supported by the Deutsche Forschungsgemeinschaft (DFG grant MA 6346/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Markert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hinzke, T., Kleiner, M., Markert, S. (2018). Centrifugation-Based Enrichment of Bacterial Cell Populations for Metaproteomic Studies on Bacteria–Invertebrate Symbioses. In: Becher, D. (eds) Microbial Proteomics. Methods in Molecular Biology, vol 1841. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8695-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8695-8_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8693-4

  • Online ISBN: 978-1-4939-8695-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics