Skip to main content

Functional Analysis of the Yeast LINC Complex Using Fluctuation Spectroscopy and Super-Resolution Imaging

  • Protocol
  • First Online:
The LINC Complex

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1840))

Abstract

The Saccharomyces cerevisiae and Schizosaccharomyces pombe genomes encode a single SUN domain-containing protein, Mps3 and Sad1, respectively. Both localize to the yeast centrosome (known as the spindle pole body, SPB) and are essential for bipolar spindle formation. In addition, Mps3 and Sad1 play roles in chromosome organization in both mitotic and meiotic cells that are independent of their SPB function. To dissect the function of Mps3 at the nuclear envelope (NE) and SPB, we employed cell imaging methods such as scanning fluorescence cross-correlation spectroscopy (SFCCS) and single particle averaging with structured illumination microscopy (SPA-SIM) to determine the strength, nature, and location of protein-protein interactions in vivo. We describe how these same techniques can also be used in fission yeast to analyze Sad1, providing evidence of their applicability to other NE proteins and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hagan I, Yanagida M (1995) The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability. J Cell Biol 129:1033–1047

    Article  PubMed  CAS  Google Scholar 

  2. Jaspersen SL, Giddings TH Jr, Winey M (2002) Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p. J Cell Biol 159:945–956

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Nishikawa S, Terazawa Y, Nakayama T et al (2003) Nep98p is a component of the yeast spindle pole body and essential for nuclear division and fusion. J Biol Chem 278:9938–9943

    Article  PubMed  CAS  Google Scholar 

  4. Jaspersen SL, Martin AE, Glazko G et al (2006) The Sad1-UNC-84 homology domain in Mps3 interacts with Mps2 to connect the spindle pole body with the nuclear envelope. J Cell Biol 174:665–675

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Walde S, King MC (2014) The KASH protein Kms2 coordinates mitotic remodeling of the spindle pole body. J Cell Sci 127:3625–3640

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Oza P, Jaspersen SL, Miele A et al (2009) Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev 23:912–927

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Swartz RK, Rodriguez EC, King MC (2014) A role for nuclear envelope-bridging complexes in homology-directed repair. Mol Biol Cell 25:2461–2471

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bupp JM, Martin AE, Stensrud ES et al (2007) Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. J Cell Biol 179:845–854

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Horigome C, Okada T, Shimazu K et al (2011) Ribosome biogenesis factors bind a nuclear envelope SUN domain protein to cluster yeast telomeres. EMBO J 30:3799–3811

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Hiraga S, Botsios S, Donze D et al (2012) TFIIIC localizes budding yeast ETC sites to the nuclear periphery. Mol Biol Cell 23:2741–2754

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Fernandez-Alvarez A, Bez C, O’Toole ET et al (2016) Mitotic nuclear envelope breakdown and spindle nucleation are controlled by interphase contacts between centromeres and the nuclear envelope. Dev Cell 39:544–559

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Chang W, Worman HJ, Gundersen GG (2015) Accessorizing and anchoring the LINC complex for multifunctionality. J Cell Biol 208:11–22

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Chikashige Y, Tsutsumi C, Yamane M et al (2006) Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125:59–69

    Article  CAS  PubMed  Google Scholar 

  14. Koszul R, Kim KP, Prentiss M et al (2008) Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope. Cell 133:1188–1201

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Conrad MN, Lee CY, Chao G et al (2008) Rapid telomere movement in meiotic prophase is promoted by NDJ1, MPS3, and CSM4 and is modulated by recombination. Cell 133:1175–1187

    Article  CAS  PubMed  Google Scholar 

  16. Conrad MN, Lee CY, Wilkerson JL et al (2007) MPS3 mediates meiotic bouquet formation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104:8863–8868

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Lee CY, Conrad MN, Dresser ME (2012) Meiotic chromosome pairing is promoted by telomere-led chromosome movements independent of bouquet formation. PLoS Genet 8:e1002730

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Chen J, Smoyer CJ, Slaughter BD et al (2014) The SUN protein Mps3 controls Ndc1 distribution and function on the nuclear membrane. J Cell Biol 204:523–539

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Chial HJ, Rout MP, Giddings TH et al (1998) Saccharomyces cerevisiae Ndc1p is a shared component of nuclear pore complexes and spindle pole bodies. J Cell Biol 143:1789–1800

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Burns S, Avena JS, Unruh JR et al (2015) Structured illumination with particle averaging reveals novel roles for yeast centrosome components during duplication. eLife 4:e0858

    Article  Google Scholar 

  21. Bestul AJ, Yu Z, Unruh JR et al (2017) Molecular model of fission yeast centrosome assembly determined by superresolution imaging. J Cell Biol 216:2409–2424

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Gardner JM, Jaspersen SL (2014) Manipulating the yeast genome: deletion, mutation, and tagging by PCR. Methods Mol Biol 1205:45–78

    Article  CAS  PubMed  Google Scholar 

  23. Bahler J, Wu JQ, Longtine MS et al (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943–951

    Article  CAS  PubMed  Google Scholar 

  24. Hentges P, Van Driessche B, Tafforeau L et al (2005) Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe. Yeast 22:1013–1019

    Article  CAS  PubMed  Google Scholar 

  25. Sato M, Dhut S, Toda T (2005) New drug-resistant cassettes for gene disruption and epitope tagging in Schizosaccharomyces pombe. Yeast 22:583–591

    Article  CAS  PubMed  Google Scholar 

  26. Kner P, Chhun BB, Griffis ER et al (2009) Super-resolution video microscopy of live cells by structured illumination. Nat Methods 6:339–342

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Chen BC, Legant WR, Wang K et al (2014) Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346:1257998

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. TLambert TJ, Waters JC (2017) Navigating challenges in the application of superresolution microscopy. J Cell Biol 216:53–63

    Article  CAS  Google Scholar 

  29. Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61

    Article  CAS  PubMed  Google Scholar 

  30. Kim SA, Heinze KG, Schwille P (2007) Fluorescence correlation spectroscopy in living cells. Nat Methods 4:963–973

    Article  PubMed  CAS  Google Scholar 

  31. Slaughter BD, Li R (2010) Toward quantitative “in vivo biochemistry” with fluorescence fluctuation spectroscopy. Mol Biol Cell 21(2010):4306–4311

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Ries J, Schwille P (2006) Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys J 91:1915–1924

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Hess ST, Webb WW (2002) Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys J 83:2300–2317

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Smoyer CJ, Katta SS, Gardner JM et al (2016) Analysis of membrane proteins localizing to the inner nuclear envelope in living cells. J Cell Biol 215:575–590

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Goedhart J, von Stetten D, Noirclerc-Savoye M et al (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3:751

    Article  PubMed  CAS  Google Scholar 

  36. Winey M, Bloom K (2012) Mitotic spindle form and function. Genetics 190:1197–1224

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Cavanaugh AM, Jaspersen SL (2017) Big lessons from little yeast: budding and fission yeast centrosome structure, duplication, and function. Annu Rev Genet 51:361–383

    Article  PubMed  CAS  Google Scholar 

  38. Muller EG, Snydsman BE, Novik I et al (2005) The organization of the core proteins of the yeast spindle pole body. Mol Biol Cell 16:3341–3352

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Winey M, Meehl JB, O’Toole ET et al (2014) Conventional transmission electron microscopy. Mol Biol Cell 25:319–323

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mennella V, Keszthelyi B, McDonald KL et al (2012) Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat Cell Biol 14:1159–1168

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Fraenkel DG (2011) Yeast intermediary metabolism. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  42. Longtine MS, McKenzie A 3rd, Demarini DJ et al (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961

    Article  CAS  PubMed  Google Scholar 

  43. Sheff MA, Thorn KS (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21:661–670

    Article  CAS  PubMed  Google Scholar 

  44. Janke C, Magiera MM, Rathfelder N et al (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21(2004):947–962

    Article  CAS  PubMed  Google Scholar 

  45. Thorn K (2017) Genetically encoded fluorescent tags. Mol Biol Cell 28:848–857

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Wu B, Chen Y, Muller JD (2009) Fluorescence fluctuation spectroscopy of mCherry in living cells. Biophys J 96:2391–2404

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Hediger F, Taddei A, Neumann FR et al (2004) Methods for visualizing chromatin dynamics in living yeast. Methods Enzymol 375:345–365

    Article  PubMed  CAS  Google Scholar 

  48. Tran PT, Paoletti A, Chang F (2004) Imaging green fluorescent protein fusions in living fission yeast cells. Methods 33:220–225

    Article  PubMed  CAS  Google Scholar 

  49. Pemberton LF (2014) Preparation of yeast cells for live-cell imaging and indirect immunofluorescence. Methods Mol Biol 1205:79–90

    Article  PubMed  CAS  Google Scholar 

  50. Malkani N, Schmid JA (2011) Some secrets of fluorescent proteins: distinct bleaching in various mounting fluids and photoactivation of cyan fluorescent proteins at YFP-excitation. PLoS One 6:e18586

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Slaughter BD, Unruh JR, Li R (2011) Fluorescence fluctuation spectroscopy and imaging methods for examination of dynamic protein interactions in yeast. Methods Mol Biol 759:283–306

    Article  CAS  PubMed  Google Scholar 

  52. Kodama Y, Hu CD (2012) BioTechniques 53:285–298

    Article  CAS  PubMed  Google Scholar 

  53. Miller KE, Kim Y, Huh WK, Park HO (2015) J Mol Biol 427:2039–2055

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Sung MK, Lim G, Yi DG, Chang YJ, Yang EB, Lee K, Huh WK (2013) Genome Res 23:736–746

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Khmelinskii A, Blaszczak E, Pantazopoulou M et al (2014) Protein quality control at the inner nuclear membrane. Nature 516:410–413

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Cabantous S, Terwilliger TC, Waldo GS (2005) Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 23:102–107

    Article  CAS  PubMed  Google Scholar 

  57. Cabantous S, Waldo GS (2005) In vivo and in vitro protein solubility assays using split GFP. Nat Methods 3:845–854

    Article  CAS  Google Scholar 

  58. Boban M, Zargari A, Andreasson C et al (2006) Asi1 is an inner nuclear membrane protein that restricts promoter access of two latent transcription factors. J Cell Biol 173:695–707

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Deshaies RJ, Schekman R (1990) Structural and functional dissection of Sec62p, a membrane-bound component of the yeast endoplasmic reticulum protein import machinery. Mol Cell Biol 10:6024–6035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Adams IR, Kilmartin JV (1999) Localization of core spindle pole body (SPB) components during SPB duplication in Saccharomyces cerevisiae. J Cell Biol 145:809–823

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to members of the Microscopy Center and the Jaspersen lab for stimulating discussions and to Briana Holt, Jennifer Gardner, Christine Smoyer, Ann Cavanaugh, Andrew Bestul, and Jeff Lange for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue L. Jaspersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Unruh, J.R., Slaughter, B.D., Jaspersen, S.L. (2018). Functional Analysis of the Yeast LINC Complex Using Fluctuation Spectroscopy and Super-Resolution Imaging. In: Gundersen, G., Worman, H. (eds) The LINC Complex. Methods in Molecular Biology, vol 1840. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8691-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8691-0_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8690-3

  • Online ISBN: 978-1-4939-8691-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics