Advertisement

Natural Cotransformation and Multiplex Genome Editing by Natural Transformation (MuGENT) of Vibrio cholerae

  • Ankur B. DaliaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1839)

Abstract

Generating mutant strains is an essential component of microbial genetics. Natural genetic transformation, a process for the uptake and integration of foreign DNA, is shared by diverse microbial species and can be exploited for making mutant strains. Canonically, this process has been used to generate single mutants and sequentially to generate strains with multiple mutations. Recently, we have described a method for multiplex genome editing by natural transformation (MuGENT), which allows the generation of strains with multiple scarless mutations in a single step. Here, we provide a detailed description of the methods used for mutagenesis of the cholera pathogen Vibrio cholerae with a particular emphasis on mutagenesis via MuGENT.

Key words

Vibrio cholerae Natural transformation Multiplex genome editing Combinatorial mutagenesis Accelerated evolution Cotransformation 

References

  1. 1.
    Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58(3):563–602 Epub 1994/09/01PubMedPubMedCentralGoogle Scholar
  2. 2.
    Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK (2005) Chitin induces natural competence in Vibrio cholerae. Science 310(5755):1824–1827. Epub 2005/12/17.  https://doi.org/10.1126/science.1120096 CrossRefPubMedGoogle Scholar
  3. 3.
    Chen Y, Dai J, Morris JG Jr, Johnson JA (2010) Genetic analysis of the capsule polysaccharide (K antigen) and exopolysaccharide genes in pandemic Vibrio parahaemolyticus O3:K6. BMC Microbiol 10:274. Epub 2010/11/04.  https://doi.org/10.1186/1471-2180-10-274 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gulig PA, Tucker MS, Thiaville PC, Joseph JL, Brown RN (2009) USER friendly cloning coupled with chitin-based natural transformation enables rapid mutagenesis of Vibrio vulnificus. Appl Environ Microbiol 75(15):4936–4949. Epub 2009/06/09.  https://doi.org/10.1128/AEM.02564-08 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pollack-Berti A, Wollenberg MS, Ruby EG (2010) Natural transformation of Vibrio fischeri requires tfoX and tfoY. Environ Microbiol 12(8):2302–2311. Epub 2010/08/01.  https://doi.org/10.1111/j.1462-2920.2010.02250.x CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Blokesch M (2012) TransFLP—a method to genetically modify Vibrio cholerae based on natural transformation and FLP-recombination. J Vis Exp 68. Epub 2012/10/25.  https://doi.org/10.3791/3761
  7. 7.
    Dalia AB, Lazinski DW, Camilli A (2014) Identification of a membrane-bound transcriptional regulator that links chitin and natural competence in Vibrio cholerae. MBio 5(1):e01028-13.  https://doi.org/10.1128/mBio.01028-13 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dalia AB, Seed KD, Calderwood SB, Camilli A (2015) A globally distributed mobile genetic element inhibits natural transformation of Vibrio cholerae. Proc Natl Acad Sci U S A 112(33):10485–10490.  https://doi.org/10.1073/pnas.1509097112 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006 0008. Epub 2006/06/02.  https://doi.org/10.1038/msb4100050 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang Y, Buchholz F, Muyrers JP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20(2):123–128.  https://doi.org/10.1038/2417 CrossRefPubMedGoogle Scholar
  11. 11.
    Sung CK, Li H, Claverys JP, Morrison DA (2001) An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl Environ Microbiol 67(11):5190–5196.  https://doi.org/10.1128/AEM.67.11.5190-5196.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Erickson RJ, Copeland JC (1973) Congression of unlinked markers and genetic mapping in the transformation of Bacillus subtilis 168. Genetics 73(1):13–21 Epub 1973/01/01PubMedPubMedCentralGoogle Scholar
  13. 13.
    Dalia AB, McDonough E, Camilli A (2014) Multiplex genome editing by natural transformation. Proc Natl Acad Sci U S A 111(24):8937–8942.  https://doi.org/10.1073/pnas.1406478111 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Horton RM, Cai ZL, Ho SN, Pease LR (1990) Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8(5):528–535PubMedGoogle Scholar
  15. 15.
    Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77(1):61–68. Epub 1989/04/15.  https://doi.org/10.1016/0378-1119(89)90359-4 CrossRefPubMedGoogle Scholar
  16. 16.
    Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR et al (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460(7257):894–898. Epub 2009/07/28.  https://doi.org/10.1038/nature08187 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cha RS, Zarbl H, Keohavong P, Thilly WG (1992) Mismatch amplification mutation assay (MAMA): application to the c-H-ras gene. PCR Methods Appl 2(1):14–20CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations