Advertisement

Isolation of Outer Membrane Vesicles Including Their Quantitative and Qualitative Analyses

  • Paul Kohl
  • Franz G. Zingl
  • Thomas O. Eichmann
  • Stefan SchildEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1839)

Abstract

Outer membrane vesicles (OMVs) are naturally secreted from the bacterial cell surface and therefore localized in the cell-free supernatant of bacterial cultures. Here we describe methods for crude and density gradient-purified OMV isolation and protocols for control analyses for protein profiling (SDS-PAGE), detection of indicator proteins (immunoblot analysis), lipid profiling (lipid extraction and LC-MS analysis), vesicle size determination (NanoSight), rough estimation of biomass (TrayCell™), as well as quantifications of defined OMV components, e.g., proteins (Bradford) and LPS (Purpald).

Key words

OMVs Ultracentrifugation Density gradient purification Quantification NanoSight TrayCell™ Bradford Purpald SDS-PAGE Immunoblot Lipid extraction LC-MS 

Notes

Acknowledgments

This work was supported by the Austrian FWF grants P25691 to S.S. and W901-B12 (DK Molecular Enzymology) to P.K., F.Z., and S.S. as well as BioTechMed Graz (Flagship project “Secretome”).

References

  1. 1.
    Beveridge TJ (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181(16):4725–4733PubMedPubMedCentralGoogle Scholar
  2. 2.
    Grenier D, Mayrand D (1987) Functional characterization of extracellular vesicles produced by Bacteroides gingivalis. Infect Immun 55(1):111–117PubMedPubMedCentralGoogle Scholar
  3. 3.
    Gankema H, Wensink J, Guinee PA, Jansen WH, Witholt B (1980) Some characteristics of the outer membrane material released by growing enterotoxigenic Escherichia coli. Infect Immun 29(2):704–713PubMedPubMedCentralGoogle Scholar
  4. 4.
    McBroom AJ, Kuehn MJ (2007) Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol 63(2):545–558CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188(16):5945–5957CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Alves NJ, Turner KB, Walper SA (2016) Directed protein packaging within outer membrane vesicles from Escherichia coli: design, production and purification. J Vis Exp (117).  https://doi.org/10.3791/54458
  7. 7.
    Alves NJ, Turner KB, Daniele MA, Oh E, Medintz IL, Walper SA (2015) Bacterial nanobioreactors—directing enzyme packaging into bacterial outer membrane vesicles. ACS Appl Mater Interfaces 7(44):24963–24972.  https://doi.org/10.1021/acsami.5b08811 CrossRefPubMedGoogle Scholar
  8. 8.
    Leitner DR, Lichtenegger S, Temel P, Zingl FG, Ratzberger D, Roier S, Schild-Prüfert K, Feichter S, Reidl J, Schild S (2015) A combined vaccine approach against Vibrio cholerae and ETEC based on outer membrane vesicles. Front Microbiol 6:823.  https://doi.org/10.3389/fmicb.2015.00823 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Leitner DR, Feichter S, Schild-Prufert K, Rechberger GN, Reidl J, Schild S (2013) Lipopolysaccharide modifications of a cholera vaccine candidate based on outer membrane vesicles reduce endotoxicity and reveal the major protective antigen. Infect Immun 81(7):2379–2393.  https://doi.org/10.1128/IAI.01382-12 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schild S, Nelson EJ, Bishop AL, Camilli A (2009) Characterization of Vibrio cholerae outer membrane vesicles as a candidate vaccine for cholera. Infect Immun 77(1):472–484CrossRefPubMedGoogle Scholar
  11. 11.
    Bielig H, Rompikuntal PK, Dongre M, Zurek B, Lindmark B, Ramstedt M, Wai SN, Kufer TA (2011) NOD-like receptor activation by outer membrane vesicles from Vibrio cholerae non-O1 non-O139 strains is modulated by the quorum-sensing regulator HapR. Infect Immun 79(4):1418–1427.  https://doi.org/10.1128/IAI.00754-10 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rompikuntal PK, Vdovikova S, Duperthuy M, Johnson TL, Ahlund M, Lundmark R, Oscarsson J, Sandkvist M, Uhlin BE, Wai SN (2015) Outer membrane vesicle-mediated export of processed PrtV protease from Vibrio cholerae. PLoS One 10(7):e0134098.  https://doi.org/10.1371/journal.pone.0134098 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sjostrom AE, Sandblad L, Uhlin BE, Wai SN (2015) Membrane vesicle-mediated release of bacterial RNA. Sci Rep 5:15329.  https://doi.org/10.1038/srep15329 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Altindis E, Cozzi R, Di Palo B, Necchi F, Mishra RP, Fontana MR, Soriani M, Bagnoli F, Maione D, Grandi G, Liberatori S (2015) Protectome analysis: a new selective bioinformatics tool for bacterial vaccine candidate discovery. Mol Cell Proteomics 14(2):418–429.  https://doi.org/10.1074/mcp.M114.039362 CrossRefPubMedGoogle Scholar
  15. 15.
    Schild S, Nelson EJ, Camilli A (2008) Immunization with Vibrio cholerae outer membrane vesicles induces protective immunity in mice. Infect Immun 76(10):4554–4563CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Roier S, Leitner DR, Iwashkiw J, Schild-Prufert K, Feldman MF, Krohne G, Reidl J, Schild S (2012) Intranasal immunization with Nontypeable Haemophilus influenzae outer membrane vesicles induces cross-protective immunity in mice. PLoS One 7(8):e42664CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Roier S, Fenninger JC, Leitner DR, Rechberger GN, Reidl J, Schild S (2013) Immunogenicity of Pasteurella multocida and Mannheimia haemolytica outer membrane vesicles. Int J Med Microbiol 303(5):247–256.  https://doi.org/10.1016/j.ijmm.2013.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Roier S, Blume T, Klug L, Wagner GE, Elhenawy W, Zangger K, Prassl R, Reidl J, Daum G, Feldman MF, Schild S (2015) A basis for vaccine development: comparative characterization of Haemophilus influenzae outer membrane vesicles. Int J Med Microbiol 305(3):298–309.  https://doi.org/10.1016/j.ijmm.2014.12.005 CrossRefPubMedGoogle Scholar
  19. 19.
    Roier S, Zingl FG, Cakar F, Durakovic S, Kohl P, Eichmann TO, Klug L, Gadermaier B, Weinzerl K, Prassl R, Lass A, Daum G, Reidl J, Feldman MF, Schild S (2016) A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nat Commun 7:10515.  https://doi.org/10.1038/ncomms10515 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Knittelfelder OL, Weberhofer BP, Eichmann TO, Kohlwein SD, Rechberger GN (2014) A versatile ultra-high performance LC-MS method for lipid profiling. J Chromatogr B Anal Technol Biomed Life Sci 951–952:119–128.  https://doi.org/10.1016/j.jchromb.2014.01.011 CrossRefGoogle Scholar
  21. 21.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509PubMedGoogle Scholar
  22. 22.
    Kang D, Gho YS, Suh M, Kang C (2002) Highly sensitive and fast protein detection with coomassie brilliant blue in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bull Kor Chem Soc 23(11):1511–1512CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Paul Kohl
    • 1
  • Franz G. Zingl
    • 1
  • Thomas O. Eichmann
    • 1
  • Stefan Schild
    • 1
    • 2
    Email author
  1. 1.Institute of Molecular BiosciencesUniversity of GrazGrazAustria
  2. 2.BioTechMedGrazAustria

Personalised recommendations