Advertisement

Transposon Sequencing of Vibrio cholerae in the Infant Rabbit Model of Cholera

  • Lauren M. Shull
  • Andrew CamilliEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1839)

Abstract

Transposon sequencing, or Tn-seq, combines transposon mutagenesis and massively parallel sequencing to allow for rapid and high-throughput identification of genes that play roles in fitness within environments of interest. The bacterial pathogen Vibrio cholerae is an excellent candidate for Tn-seq screens due to the availability of a plasmid-based in vivo transposition system and the relative ease with which the cholera disease state can be modeled in animals. This chapter will describe a method for performing Tn-seq screens on V. cholerae in the infant rabbit model of cholera.

Key words

Transposon sequencing Tn-seq Vibrio cholerae Virulence Cholera Infant rabbit 

References

  1. 1.
    van Opijnen T, Bodi KL, Camilli A (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6:767–772.  https://doi.org/10.1038/nmeth.1377 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    van Opijnen T, Camilli A (2013) Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Rev Microbiol 11:435–442.  https://doi.org/10.1038/nrmicro3033 CrossRefPubMedGoogle Scholar
  3. 3.
    van Opijnen T, Lazinski DW, Camilli A (2014) Genome-wide fitness and genetic interactions determined by Tn-seq, a high-throughput massively parallel sequencing method for microorganisms. Curr Protoc Mol Biol 106:7.16.1–7.1624.  https://doi.org/10.1002/0471142727.mb0716s106 CrossRefGoogle Scholar
  4. 4.
    Lazinski DW, Camilli A (2013) Homopolymer tail-mediated ligation PCR: a streamlined and highly efficient method for DNA cloning and library construction. BioTechniques 54:25–34.  https://doi.org/10.2144/000113981 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    McDonough E, Lazinski DW, Camilli A (2014) Identification of in vivo regulators of the Vibrio cholerae xds gene using a high-throughput genetic selection. Mol Microbiol 92:302–315.  https://doi.org/10.1111/mmi.12557 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Klein BA, Tenorio EL, Lazinski DW et al (2012) Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis. BMC Genomics 13:578.  https://doi.org/10.1186/1471-2164-13-578 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bender J, Kleckner N (1992) Tn10 insertion specificity is strongly dependent upon sequences immediately adjacent to the target-site consensus sequence. Proc Natl Acad Sci U S A 89:7996–8000CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kamp HD, Patimalla-Dipali B, Lazinski DW et al (2013) Gene fitness landscapes of Vibrio cholerae at important stages of its life cycle. PLoS Pathog 9:e1003800.  https://doi.org/10.1371/journal.ppat.1003800 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ujiiye A, Nakatomi M, Utsunomiya A et al (1968) Experimental cholera in mice: I. First report on the oral infection. Trop Med 10:65–71Google Scholar
  10. 10.
    Klose KE (2000) The suckling mouse model of cholera. Trends Microbiol 8:189–191.  https://doi.org/10.1016/S0966-842X(00)01721-2 CrossRefPubMedGoogle Scholar
  11. 11.
    Ritchie JM, Rui H, Bronson RT, Waldor MK (2010) Back to the future: studying cholera pathogenesis using infant rabbits. mBio 1:e00047-10.  https://doi.org/10.1128/mBio.00047-10 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tufts University School of MedicineBostonUSA

Personalised recommendations