Skip to main content

Phage on Tap: A Quick and Efficient Protocol for the Preparation of Bacteriophage Laboratory Stocks

  • Protocol
  • First Online:
The Human Virome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1838))

Abstract

A major limitation with traditional phage preparations is the variability in titer, salts, and bacterial contaminants between successive propagations. Here, we introduce the Phage On Tap (PoT) protocol for the quick and efficient preparation of homogenous bacteriophage (phage) stocks. This method produces homogenous, laboratory-scale, high titer (up to 1010–12 PFU/mL), endotoxin reduced phage banks that can be used to eliminate the variability between phage propagations, improve the molecular characterizations of phage, and may be applicable for therapeutic applications. The method consists of five major parts, including phage propagation, phage cleanup by 0.22 μm filtering and chloroform treatment, phage concentration by ultrafiltration, endotoxin removal, and the preparation and storage of phage banks for continuous laboratory use. From a starting liquid lysate of >100 mL, the PoT protocol generated a cleaned, homogenous, laboratory phage bank with a phage recovery efficiency of 85% within just 2 days. In contrast, the traditional method took upward of 5 days to produce a high titer, but lower volume phage stock with a recovery efficiency of only 4%. Phage banks can be further purified for the removal of bacterial endotoxins, reducing endotoxin concentrations by over 3000-fold while maintaining phage titer. The PoT protocol focused on T-like phages, but is broadly applicable to a variety of phages that can be propagated to sufficient titer, producing homogenous, high titer phage banks that are applicable for molecular and cellular assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams MH (1959) Bacteriophages. Interscience, New York, NY

    Google Scholar 

  2. Yamamoto KR, Alberts BM, Benzinger R et al (1970) Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 40:734–744

    Article  CAS  PubMed  Google Scholar 

  3. Seeley ND, Primrose SB (1982) A review: the isolation of bacteriophages from the environment. J Appl Bacteriol 53:1–17

    Article  CAS  PubMed  Google Scholar 

  4. Suttle CA, Chan AM, Cottrell MT (1991) Use of ultrafiltration to isolate viruses from seawater which are pathogens of marine phytoplankton. Appl Environ Microbiol 57:721–726

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Carlson K (2004) Working with bacteriophages: common techniques and methodological approaches. CRC Press

    Google Scholar 

  6. Bourdin G, Schmitt B, Marvin Guy L et al (2014) Amplification and purification of T4-like Escherichia coli phages for phage therapy: from laboratory to pilot scale. Applied Environ Microbiol 80:1469–1476

    Article  CAS  Google Scholar 

  7. Raetz CRH, Reynolds CM, Trent MS et al (2007) Lipid a modification systems in gram-negative bacteria. Annu Rev Biochem 76:295–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Magalhães PO, Lopes AM, Mazzola PG et al (2013) Methods of endotoxin removal from biological preparations : a review. J Pharm Pharm Sci 10:388–404

    Google Scholar 

  9. Morrison DC, Ulevitch RJ (1978) The effects of bacterial endotoxins on host mediation systems. A review. Am J Pathol 93:526–618

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Rietschel E, Kirikae T, Schade F et al (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 8:217–225

    Article  CAS  PubMed  Google Scholar 

  11. Alexander C, Rietschel ET (2001) Invited review: bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7:167–202

    PubMed  CAS  Google Scholar 

  12. Pabst MJ, Pabst KM, Handsman DB et al (2008) Proteome of monocyte priming by lipopolysaccharide, including changes in interleukin-1beta and leukocyte elastase inhibitor. Proteome Sci 6:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bruttin A, Brüssow H (2005) Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 49:2874–2878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gorbet MB, Sefton MV (2005) Endotoxin: the uninvited guest. Biomaterials 26:6811–6817

    Article  CAS  PubMed  Google Scholar 

  15. Abedon ST, Kuhl SJ, Blasdel BG et al (2011) Phage treatment of human infections. Bacteriophage 1:66–85

    Article  PubMed  PubMed Central  Google Scholar 

  16. Barr JJ, Auro R, Furlan M et al (2013) Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A 110:10771–10776

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barr JJ, Auro R, Sam-Soon N et al (2015) Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters. Proc Natl Acad Sci U S A 112:201508355

    Article  CAS  Google Scholar 

  18. Bonilla N, Rojas MI, Netto Flores Cruz G et al (2016) Phage on tap–a quick and efficient protocol for the preparation of bacteriophage laboratory stocks. PeerJ 4:e2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boratyński J, Syper D, Weber-Dabrowska B et al (2004) Preparation of endotoxin-free bacteriophages. Cell Mol Biol Lett 9:253–259

    PubMed  Google Scholar 

  20. Merabishvili M, Pirnay J-P, Verbeken G et al (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One 4:e4944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oślizło A, Miernikiewicz P, Piotrowicz A et al (2011) Purification of phage display-modified bacteriophage T4 by affinity chromatography. BMC Biotechnol 11:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Branston SD, Wright J, Keshavarz-Moore E (2015) A non-chromatographic method for the removal of endotoxins from bacteriophages. Biotechnol Bioeng 112:1714–1719

    Article  CAS  PubMed  Google Scholar 

  23. Szermer-Olearnik B, Boratyński J (2015) Removal of endotoxins from bacteriophage preparations by extraction with organic solvents. PLoS One 10:e0122672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schooley RT, Biswas B, Gill JJ et al (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother AAC.00954–17

    Google Scholar 

  25. Morrison DC, Leive L (1975) Fractions of lipopolysaccharide from Escherichia coli O111:B4 prepared by two extraction procedures. J Biol Chem 250:2911–2919

    PubMed  CAS  Google Scholar 

  26. Erickson HP (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proc Online 11:32–51

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy J. Barr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bonilla, N., Barr, J.J. (2018). Phage on Tap: A Quick and Efficient Protocol for the Preparation of Bacteriophage Laboratory Stocks. In: Moya, A., Pérez Brocal, V. (eds) The Human Virome. Methods in Molecular Biology, vol 1838. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8682-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8682-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8681-1

  • Online ISBN: 978-1-4939-8682-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics