Skip to main content

Diversity Analysis in Viral Metagenomes

  • Protocol
  • First Online:
The Human Virome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1838))

Abstract

Viruses are the most abundant and diverse biological entity in the earth. Nowadays, there are several viral metagenomes from different ecological niches which have been used to characterize new viral particles and to determine their diversity. However, viral metagenomic data have the disadvantage to be high-dimensional compositional and sparse. This type of data renders many of the conventional multivariate statistical analyses inoperative. Fortunately, different libraries and statistical packages have been developed to deal with this problem and perform the different ecological and statistical analyses. In the present chapter, it is analyzed simulated viral metagenomes, based on real human gut-associated viral metagenomes, using different R and python packages. The example presented here includes the estimation and comparison of different indexes of diversity, evenness, and richness; perform different ordination and statistical analysis using different dissimilarity metrics; determine the optimal cluster configuration and perform biomarker discovery. The scripts and the simulated datasets are in https://github.com/jorgevazcast/Viromic-diversity

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Council NR (1999) Perspectives on biodiversity: valuing its role in an everchanging world. The National Academies Press, Washington

    Google Scholar 

  2. Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Article  Google Scholar 

  3. Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  4. Tuomisto H (2010) A consistent terminology for quantifying species diversity? Yes, it does exist. Oecologia 164:853–860

    Article  PubMed  Google Scholar 

  5. Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 1:265–270

    Google Scholar 

  6. Chao A, Lee SM (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc:210–217

    Google Scholar 

  7. Mulder CPH, Bazeley-White E, Dimitrakopoulos PG et al (2004) Species evenness and productivity in experimental plant communities. Oikos 107:50–63

    Article  Google Scholar 

  8. Whittaker RH (1960) Vegetation of the siskiyou mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  9. Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68

    Article  Google Scholar 

  10. Caporaso J, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Philosof A, Yutin N, Flores-Uribe J et al (2017) Novel abundant oceanic viruses of uncultured marine group II Euryarchaeota. Curr Biol 27:1362–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA et al (2016) Uncovering earth’s virome. Nature 536:425–430

    Article  CAS  PubMed  Google Scholar 

  14. Vázquez-Castellanos JF, García-López R, Pérez-Brocal V et al (2014) Comparison of different assembly and annotation tools on analysis of simulated viral metagenomic communities in the gut. BMC Genomics 15:37

    Article  PubMed  PubMed Central  Google Scholar 

  15. Aitchison J (1981) A new approach to null correlations of proportions. Math Geol 12:175–189

    Article  Google Scholar 

  16. Li H (2015) Microbiome, metagenomics, and high-dimensional compositional data analysis. Annu Rev Stat Its Appl 2:73–94

    Article  Google Scholar 

  17. Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Paulson JN, Stine OC, Bravo HC et al (2013) Differential abundance analysis for microbial marker-gene surveys. Nat Methods 10:1200–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pérez-Brocal V, García-López R, Nos P et al (2015) Metagenomic analysis of crohn’s disease patients identifies changes in the virome and microbiome related to disease status and therapy, and detects potential interactions and biomarkers. Inflamm Bowel Dis 21(11):2515–2532

    Article  PubMed  Google Scholar 

  21. Weiss S, Xu ZZ, Peddada S et al (2017) Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5:27

    Article  PubMed  PubMed Central  Google Scholar 

  22. Angly F, Rodriguez-Brito B, Bangor D et al (2005) PHACCS, an online tool for estimating the structure and diversity of uncultured viral communities using metagenomic information. BMC Bioinfo 6:41

    Article  CAS  Google Scholar 

  23. Reyes A, Haynes M, Hanson N et al (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. Nat Publ Group 466:334–338

    CAS  Google Scholar 

  24. Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oksanen J, Kindt R, Legendre P et al (2008) Vegan: community ecology package

    Google Scholar 

  26. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  27. Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vázquez-Castellanos, J. (2018). Diversity Analysis in Viral Metagenomes. In: Moya, A., Pérez Brocal, V. (eds) The Human Virome. Methods in Molecular Biology, vol 1838. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8682-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8682-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8681-1

  • Online ISBN: 978-1-4939-8682-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics