Skip to main content

Phenotypic Lentivirus Screens to Identify Antiviral Single Domain Antibodies

  • Protocol
  • First Online:
Influenza Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1836))

Abstract

Our understanding of infection biology is based on experiments in which pathogen or host proteins are perturbed by small compound inhibitors, mutation, or depletion. This approach has been remarkably successful, as, for example, demonstrated by the independent identification of the endosomal membrane protein Niemann-Pick C1 as an essential factor for Ebola virus infection in both small compound and insertional mutagenesis screens (Côté, Nature 477:344–348, 2011; Carette et al., Nature 477:340–343, 2011). However, many aspects of host-pathogen interactions are poorly understood because we cannot target all of the involved molecules with small molecules, or because we cannot deplete essential proteins. Single domain antibody fragments expressed in the cytosol or other organelles constitute a versatile alternative to perturb the function of any given protein by masking protein-protein interaction interfaces, by stabilizing distinct conformations, or by directly interfering with enzymatic activities. The variable domains of heavy chain-only antibodies (VHHs) from camelid species can be cloned from blood samples of animals immunized with the desired target molecules. We can thus exploit the ability of the camelid immune system to generate affinity-matured single domain antibody fragments to obtain highly specific tools. Interesting VHH candidates are typically identified based on their affinity toward immobilized antigens using techniques such as phage display.

The phenotypical screening approach described here allows the direct identification of VHHs that prevent infection of cells with influenza A virus (IAV) or other pathogens. The VHH repertoire is cloned into a lentiviral vector, which is used to generate pseudo-typed lentivirus particles. Target cells are transduced with the lentivirus, so that every cell inducibly expresses a different VHH. This cell collection is then challenged with a lethal dose of virus. Only the cells which express a VHH that prevents infection by targeting virus proteins or host cell components essential for infection will survive. We can thus identify critical target molecules including vulnerable epitopes and conformations, render target molecules accessible to informative perturbation studies, and stabilize intermediates of virus entry for detailed analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gargano N, Cattaneo A (1997) Rescue of a neutralizing anti-viral antibody fragment from an intracellular polyclonal repertoire expressed in mammalian cells. FEBS Lett 414:537–540

    Article  CAS  PubMed  Google Scholar 

  2. Helma J, Cardoso MC, Muyldermans S, Leonhardt H (2015) Nanobodies and recombinant binders in cell biology. J Cell Biol 209:633–644. https://doi.org/10.1083/jcb.201409074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82:775–797. https://doi.org/10.1146/annurev-biochem-063011-092449

    Article  PubMed  CAS  Google Scholar 

  4. Schmidt FI, Lu A, Chen JW et al (2016) A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly. J Exp Med 213:771–790. https://doi.org/10.1084/jem.20151790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Maass DR, Sepulveda J, Pernthaner A, Shoemaker CB (2007) Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs). J Immunol Methods 324:13–25. https://doi.org/10.1016/j.jim.2007.04.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Sosa BA, Demircioglu FE, Chen JZ et al (2014) How lamina-associated polypeptide 1 (LAP1) activates Torsin. elife 3:e03239. https://doi.org/10.7554/eLife.03239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ingram JR, Knockenhauer KE, Markus BM et al (2015) Allosteric activation of apicomplexan calcium-dependent protein kinases. Proc Natl Acad Sci U S A 112:E4975–E4984. https://doi.org/10.1073/pnas.1505914112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Pardon E, Laeremans T, Triest S et al (2014) A general protocol for the generation of Nanobodies for structural biology. Nat Protoc 9:674–693. https://doi.org/10.1038/nprot.2014.039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Truttmann MC, Wu Q, Stiegeler S et al (2015) HypE-specific nanobodies as tools to modulate HypE-mediated target AMPylation. J Biol Chem 290:9087–9100. https://doi.org/10.1074/jbc.M114.634287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ashour J, Schmidt FI, Hanke L et al (2015) Intracellular expression of camelid single-domain antibodies specific for influenza virus nucleoprotein uncovers distinct features of its nuclear localization. J Virol 89:2792–2800. https://doi.org/10.1128/JVI.02693-14

    Article  PubMed  CAS  Google Scholar 

  11. Vanlandschoot P, Stortelers C, Beirnaert E et al (2011) Nanobodies(R): new ammunition to battle viruses. Antivir Res 92:389–407. https://doi.org/10.1016/j.antiviral.2011.09.002

    Article  PubMed  CAS  Google Scholar 

  12. Schmidt FI, Hanke L, Morin B et al (2016) Phenotypic lentivirus screens to identify functional single domain antibodies. Nat Microbiol 1:16080. https://doi.org/10.1038/nmicrobiol.2016.80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Meerbrey KL, Hu G, Kessler JD et al (2011) The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proc Natl Acad Sci U S A 108:3665–3670. https://doi.org/10.1073/pnas.1019736108

    Article  PubMed  PubMed Central  Google Scholar 

  14. Barrios-Rodiles M, Brown KR, Ozdamar B et al (2005) High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307:1621–1625. https://doi.org/10.1126/science.1105776

    Article  PubMed  CAS  Google Scholar 

  15. Hanke L, Knockenhauer KE, Brewer RC et al (2016) The antiviral mechanism of an influenza a virus nucleoprotein-specific single-domain antibody fragment. MBio 7:e01569-16. https://doi.org/10.1128/mBio.01569-16

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hanke L, Schmidt FI, Knockenhauer KE et al (2017) Vesicular stomatitis virus N protein-specific single-domain antibody fragments inhibit replication. EMBO Rep 18:1027–1037. https://doi.org/10.15252/embr.201643764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lefranc M-P, Giudicelli V, Ginestoux C et al (1999) IMGT, the international ImMunoGeneTics database. Nucleic Acids Res 27:209–212. https://doi.org/10.1093/nar/27.1.209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Ingo Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schmidt, F.I. (2018). Phenotypic Lentivirus Screens to Identify Antiviral Single Domain Antibodies. In: Yamauchi, Y. (eds) Influenza Virus. Methods in Molecular Biology, vol 1836. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8678-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8678-1_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8677-4

  • Online ISBN: 978-1-4939-8678-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics