Skip to main content

Haploid Screening for the Identification of Host Factors in Virus Infection

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1836))

Abstract

Elucidating which host factors are exploited by viruses to infect target cells is key to our understanding of how these pathogens cause disease and how it might be counteracted by future therapies. Pooled gene-trap mutagenesis of haploid human HAP1 cells has proven to be a formidable tool for revealing genes involved in the infection process for a suite of human pathogenic viruses. This method has led to the identification of a number of virus receptors and unconventional entry mechanisms into human cells. In the case of Ebola virus, for example, the discovery of the lysosomal protein NPC1 as an intracellular receptor sparked the development of tailored strategies to interfere with viral infection. The “single tube” pooled screening technique presented here does not require any automation or robotics and is potentially applicable to any virus able to infect HAP1 cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. World Health Organization (2017) WHO|Disease outbreaks by year. http://www.who.int/csr/don/archive/year/en/

  2. Krieger M, Brown MS, Goldstein JL (1981) Isolation of Chinese hamster cell mutants defective in the receptor-mediated endocytosis of low density lipoprotein. J Mol Biol 150:167–184

    Article  CAS  PubMed  Google Scholar 

  3. Guo G, Wang W, Bradley A (2004) Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells. Nature 429:891–895. https://doi.org/10.1038/nature02653

    Article  CAS  PubMed  Google Scholar 

  4. Yusa K, Horie K, Kondoh G et al (2004) Genome-wide phenotype analysis in ES cells by regulated disruption of Bloom’s syndrome gene. Nature 429:896–899. https://doi.org/10.1038/nature02646

    Article  CAS  PubMed  Google Scholar 

  5. Cathomen T, Keith Joung J (2008) Zinc-finger nucleases: the next generation emerges. Mol Ther 16:1200–1207. https://doi.org/10.1038/mt.2008.114

    Article  CAS  PubMed  Google Scholar 

  6. Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761. https://doi.org/10.1534/genetics.110.120717

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science 315:1709–1712. https://doi.org/10.1126/science.1138140

    Article  CAS  PubMed  Google Scholar 

  8. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. https://doi.org/10.1038/35888

    Article  CAS  PubMed  Google Scholar 

  10. Kotecki M, Reddy PS, Cochran BH (1999) Isolation and characterization of a near-haploid human cell line. Exp Cell Res 252:273–280. https://doi.org/10.1006/excr.1999.4656

    Article  PubMed  CAS  Google Scholar 

  11. Carette JE, Guimaraes CP, Varadarajan M et al (2009) Haploid genetic screens in human cells identify host factors used by pathogens. Science 326:1231–1235. https://doi.org/10.1126/science.1178955

    Article  PubMed  CAS  Google Scholar 

  12. Carette JE, Guimaraes CP, Wuethrich I et al (2011) Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat Biotechnol 29(6):542. https://doi.org/10.1038/nbt.1857

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Carette JE, Raaben M, Wong AC et al (2011) Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature 477:340–343. https://doi.org/10.1038/nature10348

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Jae LT, Raaben M, Riemersma M et al (2013) Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entry. Science 340:479–483. https://doi.org/10.1126/science.1233675

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Jae LT, Raaben M, Herbert AS et al (2014) Lassa virus entry requires a trigger-induced receptor switch. Science 344:1506–1510. https://doi.org/10.1126/science.1252480

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Timms RT, Duncan LM, Tchasovnikarova IA et al (2013) Haploid genetic screens identify an essential role for PLP2 in the downregulation of novel plasma membrane targets by viral E3 ubiquitin ligases. PLoS Pathog 9:e1003772. https://doi.org/10.1371/journal.ppat.1003772

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. van den Boomen DJH, Timms RT, Grice GL et al (2014) TMEM129 is a Derlin-1 associated ERAD E3 ligase essential for virus-induced degradation of MHC-I. Proc Natl Acad Sci 111:11425–11430. https://doi.org/10.1073/pnas.1409099111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Riblett AM, Blomen VA, Jae LT et al (2015) A haploid genetic screen identifies heparan sulfate proteoglycans supporting rift valley fever virus infection. J Virol 90:1414–1423. https://doi.org/10.1128/JVI.02055-15

    Article  CAS  PubMed  Google Scholar 

  19. Kleinfelter LM, Jangra RK, Jae LT et al (2015) Haploid genetic screen reveals a profound and direct dependence on cholesterol for hantavirus membrane fusion. MBio 6:e00801. https://doi.org/10.1128/mBio.00801-15

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Petersen J, Drake MJ, Bruce EA, Riblett AM, Didigu CA, Wilen CB, Malani N, Male F, Lee FH, Bushman FD, Cherry S, Doms RW, Bates P, Briley K Jr (2014) The major cellular sterol regulatory pathway is required for Andes virus infection. PLoS Pathog 10(2):e1003911. https://doi.org/10.1371/journal.ppat.1003911

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Pillay S, Meyer NL, Puschnik AS et al (2016) An essential receptor for adeno-associated virus infection. Nature 530:108–112. https://doi.org/10.1038/nature16465

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Baggen J, Thibaut HJ, Staring J et al (2016) Enterovirus D68 receptor requirements unveiled by haploid genetics. Proc Natl Acad Sci U S A 113:1399–1404. https://doi.org/10.1073/pnas.1524498113

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Marceau CD, Puschnik AS, Majzoub K et al (2016) Genetic dissection of flaviviridae host factors through genome-scale CRISPR screens. Nature 535:159–163. https://doi.org/10.1038/nature18631

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Realegeno S, Puschnik AS, Kumar A et al (2017) Monkeypox virus host factor screen using haploid cells identifies essential role of GARP complex in extracellular virus formation. J Virol 91:e00011–e00017. https://doi.org/10.1128/JVI.00011-17

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Tanaka A, Tumkosit U, Nakamura S, et al (2017) Genome-wide screening uncovers the significance of N-sulfation of heparan sulfate as a host cell factor for chikungunya virus infection. J Virol.91(13). pii: e00432–17. doi: https://doi.org/10.1128/JVI.00432-17

  26. Staring J, von Castelmur E, Blomen VA et al (2017) PLA2G16 represents a switch between entry and clearance of Picornaviridae. Nature 541:412–416

    Article  PubMed  CAS  Google Scholar 

  27. Drake MJ, Brennan B, Briley K et al (2017) A role for glycolipid biosynthesis in severe fever with thrombocytopenia syndrome virus entry. PLoS Pathog 13:e1006316. https://doi.org/10.1371/journal.ppat.1006316

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Carette JE, Pruszak J, Varadarajan M et al (2010) Generation of iPSCs from cultured human malignant cells. Blood 115:4039–4042. https://doi.org/10.1182/blood-2009-07-231845

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Essletzbichler P, Konopka T, Santoro F et al (2014) Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Res 24:2059–2065. https://doi.org/10.1101/gr.177220.114

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Blomen VA, Majek P, Jae LT et al (2015) Gene essentiality and synthetic lethality in haploid human cells. Science 350:1092–1096. https://doi.org/10.1126/science.aac7557

    Article  CAS  PubMed  Google Scholar 

  31. Nicoletti I, Migliorati G, Pagliacci MC et al (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    Article  CAS  PubMed  Google Scholar 

  32. Döring A, Weese D, Rausch T et al (2008) SeqAn an efficient, generic C++ library for sequence analysis. BMC Bioinformatics 9:11. https://doi.org/10.1186/1471-2105-9-11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35:D61–D65. https://doi.org/10.1093/nar/gkl842

    Article  PubMed  CAS  Google Scholar 

  34. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas T. Jae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fessler, E., Jae, L.T. (2018). Haploid Screening for the Identification of Host Factors in Virus Infection. In: Yamauchi, Y. (eds) Influenza Virus. Methods in Molecular Biology, vol 1836. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8678-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8678-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8677-4

  • Online ISBN: 978-1-4939-8678-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics