Skip to main content

Purification of Unanchored Polyubiquitin Chains from Influenza Virions

  • Protocol
  • First Online:
Influenza Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1836))

Abstract

Influenza A virus (IAV) is an enveloped virus with a segmented single-stranded negative-strand RNA genome. In general, the role of virally encapsidated host cell proteins in the viral life cycle is unclear. The virion contains abundant ubiquitin molecules some of which have been identified as unanchored polyubiquitin chains. These ubiquitin chains have been postulated to play a role in recruiting histone deacetylase 6 (HDAC6) to the cytosolic surface of late endosomes (LEs), promoting IAV uncoating via aggresome processing—a cellular machinery that disposes of protein waste. HDAC6, a class II HDAC, is unusual because it resides mostly in the cytosol instead of the nucleus. It is a unique protein consisting of two catalytic domains (CDs) and a zinc-finger ubiquitin-binding domain (ZnF-UBP) close to its C-terminus. This ZnF-UBP recognizes the unconjugated ubiquitin C-terminus (di-Gly motif) with very high affinity. Biochemical analyses showed that free di-Gly motifs are present in the form of unanchored ubiquitin inside IAV virions. These motifs are exposed following low pH-triggered viral fusion at the LEs and attract HDAC6 transiently to the cytosolic surface of vesicles. The binding of the two components promotes viral uncoating via HDAC6 interaction with cellular motor proteins dynein and myosin II and the viral M1 capsid. The cellular mechanism involved is related to aggresome processing, a pathway that promotes degradation of misfolded protein aggregates. K63-linked ubiquitin chains are thought to be the trigger for aggresome processing, though it is still not clear whether such types of chains are prevalent within the IAV capsid. Here, we present methods using purified ZnF-UBP domain of HDAC6 to immunoprecipitate viral unanchored ubiquitin chains, which can then be used for further biochemical analyses of ubiquitin chain linkage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kessler BM (2013) Ubiquitin – omics reveals novel networks and associations with human disease. Curr Opin Chem Biol 17(1):59–65. https://doi.org/10.1016/j.cbpa.2012.12.024

    Article  PubMed  CAS  Google Scholar 

  2. Swatek KN, Komander D (2016) Ubiquitin modifications. Cell Res 26(4):399–422. https://doi.org/10.1038/cr.2016.39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ohtake F, Saeki Y, Sakamoto K, Ohtake K, Nishikawa H, Tsuchiya H, Ohta T, Tanaka K, Kanno J (2015) Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Rep 16(2):192–201. https://doi.org/10.15252/embr.201439152

    Article  PubMed  CAS  Google Scholar 

  4. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229. https://doi.org/10.1146/annurev-biochem-060310-170328

    Article  PubMed  CAS  Google Scholar 

  5. Rudnicka A, Yamauchi Y (2016) Ubiquitin in influenza virus entry and innate immunity. Viruses 8(10):E293

    Article  CAS  PubMed  Google Scholar 

  6. Polge C, Uttenweiler-Joseph S, Leulmi R, Heng AE, Burlet-Schiltz O, Attaix D, Taillandier D (2013) Deciphering the ubiquitin proteome: limits and advantages of high throughput global affinity purification-mass spectrometry approaches. Int J Biochem Cell Biol 45(10):2136–2146. https://doi.org/10.1016/j.biocel.2013.05.031

    Article  PubMed  CAS  Google Scholar 

  7. Beaudette P, Popp O, Dittmar G (2016) Proteomic techniques to probe the ubiquitin landscape. Proteomics 16(2):273–287. https://doi.org/10.1002/pmic.201500290

    Article  PubMed  CAS  Google Scholar 

  8. Scott D, Strachan J, Krishna VG, Shaw B, Tooth DJ, Searle MS, Oldham NJ, Layfield R (2016) Method for the purification of endogenous unanchored Polyubiquitin chains. Methods Mol Biol 1449:203–213

    Article  CAS  PubMed  Google Scholar 

  9. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417(6887):455–458. https://doi.org/10.1038/417455a

    Article  PubMed  CAS  Google Scholar 

  10. Matsuyama A, Shimazu T, Sumida Y, Saito A, Yoshimatsu Y, Seigneurin-Berny D, Osada H, Komatsu Y, Nishino N, Khochbin S, Horinouchi S, Yoshida M (2002) In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J 21(24):6820–6831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y, Li N, Caron C, Matthias G, Hess D, Khochbin S, Matthias P (2003) HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 22(5):1168–1179. https://doi.org/10.1093/emboj/cdg115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kovacs JJ, Murphy PJM, Gaillard S, Zhao X, Wu J-T, Nicchitta CV, Yoshida M, Toft DO, Pratt WB, Yao T-P (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18(5):601–607

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A, Koomen J, Olashaw N, Parsons JT, Yang X-J, Dent SR, Yao T-P, Lane WS, Seto E (2007) HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell 27(2):197–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miyake Y, Keusch JJ, Wang L, Saito M, Hess D, Wang X, Melancon BJ, Helquist P, Gut H, Matthias P (2016) Structural insights into HDAC6 tubulin deacetylation and its selective inhibition. Nat Chem Biol 12(9):748–754. https://doi.org/10.1038/nchembio.2140

    Article  PubMed  CAS  Google Scholar 

  15. Skultetyova L, Ustinova K, Kutil Z, Novakova Z, Pavlicek J, Mikesova J, Trapl D, Baranova P, Havlinova B, Hubalek M, Lansky Z, Barinka C (2017) Human histone deacetylase 6 shows strong preference for tubulin dimers over assembled microtubules. Sci Rep 7(1):11547. https://doi.org/10.1038/s41598-017-11739-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Boyault C, Gilquin B, Zhang Y, Rybin V, Garman E, Meyer-Klaucke W, Matthias P, Muller CW, Khochbin S (2006) HDAC6-p97/VCP controlled polyubiquitin chain turnover. EMBO J 25(14):3357–3366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115(6):727–738

    Article  CAS  PubMed  Google Scholar 

  18. Banerjee I, Miyake Y, Nobs SP, Schneider C, Horvath P, Kopf M, Matthias P, Helenius A, Yamauchi Y (2014) Influenza a virus uses the aggresome processing machinery for host cell entry. Science 346(6208):473–477. https://doi.org/10.1126/science.1257037

    Article  PubMed  CAS  Google Scholar 

  19. Hutchinson EC, Charles PD, Hester SS, Thomas B, Trudgian D, Martinez-Alonso M, Fodor E (2014) Conserved and host-specific features of influenza virion architecture. Nat Commun 5:4816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohei Yamauchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Miyake, Y., Matthias, P., Yamauchi, Y. (2018). Purification of Unanchored Polyubiquitin Chains from Influenza Virions. In: Yamauchi, Y. (eds) Influenza Virus. Methods in Molecular Biology, vol 1836. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8678-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8678-1_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8677-4

  • Online ISBN: 978-1-4939-8678-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics