Skip to main content

In Vitro Transcription Assay to Quantify Effects of H-NS Filaments on RNA Chain Elongation by RNA Polymerase

  • Protocol
  • First Online:
  • 1723 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1837))

Abstract

While structuring of the bacterial nucleoid by nucleoid-associated proteins (NAPs) is critical for proper chromosomal organization and compaction, DNA-dependent RNA polymerase (RNAP) must frequently interact with and overcome the barriers these NAPs impose upon transcription. One particular NAP in Escherichia coli that influences transcription is the histone-like nucleoid structuring protein, H-NS, that binds to DNA and forms nucleoprotein filaments. To specifically investigate the effect that H-NS filaments have on RNAP elongation, we developed an in vitro transcription assay to assess transcript elongation by RNAP when transcribing DNA bound by an H-NS filament. In this method, initiation and elongation by RNAP are uncoupled by initiating transcription in the presence of three rNTPs to halt elongation just downstream of the promoter. Before elongation is restarted, an H-NS filament is formed so that elongation occurs on an H-NS nucleoprotein filament template. We also describe visualization and analysis of the transcription products from the nucleoprotein template which provides insight into how H-NS and RNAP interact. This method is a starting point to determine effects of NAPs on RNAP elongation in a variety of conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8(3):185–195. https://doi.org/10.1038/nrmicro2261

    Article  PubMed  CAS  Google Scholar 

  2. Browning DF, Grainger DC, Busby SJ (2010) Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr Opin Microbiol 13(6):773–780. https://doi.org/10.1016/j.mib.2010.09.013

    Article  PubMed  CAS  Google Scholar 

  3. Kotlajich MV, Hron DR, Boudreau BA, Sun Z, Lyubchenko YL, Landick R (2015) Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. eLife 4:e04970. https://doi.org/10.7554/eLife.04970

  4. Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F, Landick R (2012) Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev 26(23):2621–2633. https://doi.org/10.1101/gad.196741.112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lim CJ, Lee SY, Kenney LJ, Yan J (2012) Nucleoprotein filament formation is the structural basis for bacterial protein H-NS gene silencing. Sci Rep 2:509. https://doi.org/10.1038/srep00509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Rimsky S, Zuber F, Buckle M, Buc H (2001) A molecular mechanism for the repression of transcription by the H-NS protein. Mol Microbiol 42(5):1311–1323. https://doi.org/10.1046/j.1365-2958.2001.02706.x

    Google Scholar 

  7. Lang B, Blot N, Bouffartigues E, Buckle M, Geertz M, Gualerzi CO, Mavathur R, Muskhelishvili G, Pon CL, Rimsky S, Stella S, Babu MM, Travers A (2007) High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes. Nucleic Acids Res 35(18):6330–6337. https://doi.org/10.1093/nar/gkm712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Liu Y, Chen H, Kenney LJ, Yan J (2010) A divalent switch drives H-NS/DNA-binding conformations between stiffening and bridging modes. Genes Dev 24(4):339–344. https://doi.org/10.1101/gad.1883510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Arold ST, Leonard PG, Parkinson GN, Ladbury JE (2010) H-NS forms a superhelical protein scaffold for DNA condensation. Proc Natl Acad Sci U S A. 107(36):15728–15732. https://doi.org/10.1073/pnas.1006966107

  10. van der Valk RA, Vreede J, Qin L, Moolenaar GF, Hofmann A, Goosen N, Dame RT (2017) Mechanism of environmentally driven conformational changes that modulate H-NS DNA-bridging activity. eLife 6. https://doi.org/10.7554/eLife.27369

  11. Lucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M, Hinton JC (2006) H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2(8):e81. https://doi.org/10.1371/journal.ppat.0020081

    Article  PubMed  PubMed Central  Google Scholar 

  12. Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H, Libby SJ, Fang FC (2006) Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313(5784):236–238. https://doi.org/10.1126/science.1128794

    Article  PubMed  CAS  Google Scholar 

  13. Haft RJF, Keating DH, Schwaegler T, Schwalbach MS, Vinokur J, Tremaine M, Peters JM, Kotlajich MV, Pohlmann EL, Ong IM, Grass JA, Kiley PJ, Landick R (2014) Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria. Proc Natl Acad Sci U S A 111(25):E2576–E2585. https://doi.org/10.1073/pnas.1401853111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Dole S, Nagarajavel V, Schnetz K (2004) The histone-like nucleoid structuring protein H-NS represses the Escherichia coli bgl operon downstream of the promoter. Mol Microbiol 52(2):589–600. https://doi.org/10.1111/j.1365-2958.2004.04001.x

    Article  PubMed  CAS  Google Scholar 

  15. Nagarajavel V, Madhusudan S, Dole S, Rahmouni AR, Schnetz K (2007) Repression by binding of H-NS within the transcription unit. J Biol Chem 282(32):23622–23630. https://doi.org/10.1074/jbc.M702753200

    Article  PubMed  CAS  Google Scholar 

  16. Gonzalez N, Wiggs J, Chamberlin MJ (1977) A simple procedure for resolution of Escherichia coli RNA polymerase holoenzyme from core polymerase. Arch Biochem Biophys 182:404–408

    Article  CAS  PubMed  Google Scholar 

  17. Nayak D, Voss M, Windgassen T, Mooney RA, Landick R (2013) Cys-pair reporters detect a constrained trigger loop in a paused RNA polymerase. Mol Cell 50(6):882–893. https://doi.org/10.1016/j.molcel.2013.05.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gribskov M, Burgess RR (1983) Overexpression and purification of the sigma subunit of Escherichia coli RNA polymerase. Gene 26:109–118

    Article  CAS  PubMed  Google Scholar 

  19. Svetlov V, Artsimovitch I (2015) Purification of bacterial RNA polymerase: tools and protocols. In: Artsimovitch I, Santangelo TJ (eds) Bacterial transcriptional control: methods and protocols. Springer, New York, NY, pp 13–29. https://doi.org/10.1007/978-1-4939-2392-2_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Landick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boudreau, B.A., Kotlajich, M.V., Landick, R. (2018). In Vitro Transcription Assay to Quantify Effects of H-NS Filaments on RNA Chain Elongation by RNA Polymerase. In: Dame, R. (eds) Bacterial Chromatin. Methods in Molecular Biology, vol 1837. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8675-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8675-0_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8674-3

  • Online ISBN: 978-1-4939-8675-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics