Skip to main content

Observing Bacterial Chromatin Protein-DNA Interactions by Combining DNA Flow-Stretching with Single-Molecule Imaging

  • Protocol
  • First Online:
Book cover Bacterial Chromatin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1837))

Abstract

Nucleoid-associated proteins bind to DNA specifically and nonspecifically to perform various roles in chromosome organization and segregation. In this chapter, we describe how the interaction between nucleoid-associated proteins and flow-stretched DNAs can be visualized on the single-molecule level. We describe three different experimental schemes that allow one to directly observe how these proteins that make up bacterial chromatin, associate with and act on DNAs. First, we describe how to visualize the diffusion of fluorescently labeled proteins on flow stretched DNAs. Second, we describe how the binding of bacterial chromatin proteins can be correlated with DNA condensation. Lastly, we describe the DNA motion capture assay, which allows one to probe the mechanism of DNA condensation by tracking how different segments of a flow stretched DNA are compacted by bacterial chromatin proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song D, Loparo JJ (2015) Building bridges within the bacterial chromosome. Trends Genet 31(3):164–173. https://doi.org/10.1016/j.tig.2015.01.003

    Article  PubMed  CAS  Google Scholar 

  2. Dame RT (2005) The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol 56(4):858–870. https://doi.org/10.1111/j.1365-2958.2005.04598x

    Article  PubMed  CAS  Google Scholar 

  3. Price AC, Pilkiewicz KR, Graham TG et al (2015) DNA motion capture reveals the mechanical properties of DNA at the mesoscale. Biophys J 108(10):2532–2540. https://doi.org/10.1016/j.bpj.2015.04.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Graham TG, Wang X, Song D et al (2014) ParB spreading requires DNA bridging. Genes Dev 28(11):1228–1238. https://doi.org/10.1101/gad.242206.114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chen I, Dorr BM, Liu DR (2011) A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci U S A 108(28):11399–11404. https://doi.org/10.1073/pnas.1101046108

    Article  PubMed  PubMed Central  Google Scholar 

  6. Los GV, Encell LP, McDougall MG et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3(6):373–382. https://doi.org/10.1021/cb800025k

    Article  PubMed  CAS  Google Scholar 

  7. Shi X, Jung Y, Lin LJ et al (2012) Quantitative fluorescence labeling of aldehyde-tagged proteins for single-molecule imaging. Nat Methods 9(5):499–503. https://doi.org/10.1038/nmeth.1954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  PubMed  CAS  Google Scholar 

  9. Tafvizi A, Huang F, Leith JS et al (2008) Tumor suppressor p53 slides on DNA with low friction and high stability. Biophys J 95(1):1. https://doi.org/10.1529/biophysj.108.134122

    Article  CAS  Google Scholar 

  10. Jaqaman K, Loerke D, Mettlen M et al (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5(8):695–702. https://doi.org/10.1038/nmeth.1237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Blainey PC (2007) Single-molecule studies of protein-DNA interaction: diffusive search and sequence-dependent motors. Dissertation, Harvard University

    Google Scholar 

  12. Hua B, Han KY, Zhou R et al (2014) An improved surface passivation method for single-molecule studies. Nat Methods 11(12):1233–1236. https://doi.org/10.1038/nmeth.3143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kim H, Loparo JJ (2016) Multistep assembly of DNA condensation clusters by SMC. Nat Commun 7:10200. https://doi.org/10.1038/ncomms10200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Yildiz A, Forkey JN, McKinney SA et al (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300(5628):2061–2065. https://doi.org/10.1126/science.1084398

    Article  PubMed  CAS  Google Scholar 

  15. Aitken CE, Marshall RA, Puglisi JD (2008) An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94(5):1826–1835. https://doi.org/10.1529/biophysj.107.117689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Vogelsang J, Kasper R, Steinhauer C et al (2008) A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem Int Ed Engl 47(29):5465–5469. https://doi.org/10.1002/anie.200801518

    Article  PubMed  CAS  Google Scholar 

  17. Swoboda M, Henig J, Cheng HM et al (2012) Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments. ACS Nano 6(7):6364–6369. https://doi.org/10.1021/nn301895c

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a National Science Foundation CAREER Award [MCB-1148818 to J.J.L].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph J. Loparo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kim, H., Loparo, J.J. (2018). Observing Bacterial Chromatin Protein-DNA Interactions by Combining DNA Flow-Stretching with Single-Molecule Imaging. In: Dame, R. (eds) Bacterial Chromatin. Methods in Molecular Biology, vol 1837. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8675-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8675-0_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8674-3

  • Online ISBN: 978-1-4939-8675-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics