Skip to main content

Approaches for Determining DNA Persistence Length Using Atomic Force Microscopy

  • Protocol
  • First Online:
Book cover Bacterial Chromatin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1837))

Abstract

Atomic force microscopy (AFM) is widely used to image and study biological molecules. As an example, we have utilized AFM to investigate how the mechanical properties of DNA polymers depend on electrostatics and the strength of DNA base stacking by studying double-stranded DNA molecules incorporating several different neutral and charged base modifications. Here, we describe ten complementary approaches for determining DNA persistence length by AFM imaging. The combination of different approaches provides increased confidence and statistical reliability over existing methods utilizing only a single approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rivetti C, Guthold M, Bustamante C (1996) Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis. J Mol Biol 264(5):919–932

    Article  CAS  PubMed  Google Scholar 

  2. Hansma HG (2001) Surface biology of DNA by atomic force microscopy. Annu Rev Phys Chem 52:71–92

    Article  CAS  PubMed  Google Scholar 

  3. Bustamante C, Smith SB, Liphardt J, Smith D (2000) Single-molecule studies of DNA mechanics. Curr Opin Struct Biol 10(3):279–285

    Article  CAS  PubMed  Google Scholar 

  4. Bustamante C, Bryant Z, Smith SB (2003) Ten years of tension: single-molecule DNA mechanics. Nature 421(6921):423–427

    Article  CAS  PubMed  Google Scholar 

  5. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6):491–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Murugesapillai D, Bouaziz S, Maher LJ 3rd, Israeloff NE, Cameron CE, Williams MC (2017) Accurate nanoscale flexibility measurement of DNA and DNA-protein complexes by atomic force microscopy in liquid. Nanoscale 9(31):11327–11337

    Google Scholar 

  7. Peters JP, Mogil LS, McCauley MJ, Williams MC, Maher LJ 3rd (2014) Mechanical properties of base-modified DNA are not strictly determined by base stacking or electrostatic interactions. Biophys J 107(2):448–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peters JP, Yelgaonkar SP, Srivatsan SG, Tor Y, Maher LJ 3rd (2013) Mechanical properties of DNA-like polymers. Nucleic Acids Res 41(22):10593–10604

    Google Scholar 

  9. Vologodskaia MY, Vologodskii AV (2002) Contribution of the intrinsic curvature to measured DNA persistence length. J Mol Biol 317(2):205–213

    Article  CAS  PubMed  Google Scholar 

  10. Wang H, Dodd IB, Dunlap DD, Shearwin KE, Finzi L (2013) Single molecule analysis of DNA wrapping and looping by a circular 14mer wheel of the bacteriophage 186 CI repressor. Nucleic Acids Res 41(11):5746–5756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rivetti C, Codeluppi S (2001) Accurate length determination of DNA molecules visualized by atomic force microscopy: evidence for a partial B-to A-form transition on mica. Ultramicroscopy 87(1–2):55

    Article  CAS  PubMed  Google Scholar 

  12. Wiggins PA, van der Heijden T, Moreno-Herrero F, Spakowitz AJ, Phillips R, Widom J, Dekker C, Nelson PC (2006) High flexibility of DNA on short length scales probed by atomic force microscopy. Nat Nanotechnol 1(2):137–141

    Article  CAS  PubMed  Google Scholar 

  13. Vologodskii A, Frank-Kamenetskii MD (2013) Survey and Summary strong bending of the DNA double helix. Nucleic Acids Res 41(14):6785–6792

    Google Scholar 

  14. Faas FGA, Rieger B, Van Vliet LJ, Cherny DI (2009) DNA deformations near charged surfaces: electron and atomic force microscopy views. Biophys J 97(4):1148–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moukhtar J, Faivre-Moskalenko C, Milani P, Audit B, Vaillant C, Fontaine E, Mongelard F, Lavorel G, St-Jean P, Bouvet P (2010) Effect of genomic long-range correlations on DNA persistence length: from theory to single molecule experiments. J Phys Chem B 114(15):5125–5143

    Article  CAS  PubMed  Google Scholar 

  16. Joanicot M, Revet B (1987) DNA conformational studies from electron microscopy. I. Excluded volume effect and structure dimensionality. Biopolymers 26(2):315–326

    Article  CAS  PubMed  Google Scholar 

  17. Abels JA, Moreno-Herrero F, van der Heijden T, Dekker C, Dekker NH (2005) Single-molecule measurements of the persistence length of double-stranded RNA. Biophys J 88(4):2737–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Mayo Foundation, Mayo Edward C. Kendall Fellowship (JPP), and the National Institutes of Health (GM75965 to LJM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. James Maher III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Peters, J.P., Maher, L.J. (2018). Approaches for Determining DNA Persistence Length Using Atomic Force Microscopy. In: Dame, R. (eds) Bacterial Chromatin. Methods in Molecular Biology, vol 1837. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8675-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8675-0_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8674-3

  • Online ISBN: 978-1-4939-8675-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics