Skip to main content

Lipase and Phospholipase Activity Methods for Marine Organisms

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1835))

Abstract

Lipases are very important enzymes having a role in fat digestion and lipid metabolism in marine animals, plants, and microorganisms. The methods for measuring lipase and phospholipase activity have been applied in several studies; however, considering that lipases are water-soluble molecules and their substrates are generally water-insoluble molecules, several steps are required for measuring their digestion products. After a general review of the main type of methods used in marine lipase studies, and experimental procedures, a proposal of new or improved methods is described in order to facilitate the lipase activity measurements in marine organisms.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Vega-Villasante F, Fernández I, Preciado RM, Oliva M, Tovar D, Nolasco H (1999) The activity of digestive enzymes during the molting stages of the arched swimming Callinectes arcuatus Ordway, 1863 (Crustacea: Decapoda: Portunidae). Bull Mar Sci 65(1):1–9

    Google Scholar 

  2. Casillas-Hernández R, Magallón F, Portillo G, Carrillo O, Nolasco H, Vega-Villasante H (2002) La actividad proteasa, amilasa y lipasa durante los estadios de muda del camarón azul Litopenaeus stylirostris. Rev Investig Mar 23(1):35–40

    Google Scholar 

  3. Alvarez-González CA, Cervantes-Trujano M, Tovar-Ramírez D, Conklin DE, Nolasco H, Gisbert E, Piedrahita R (2005) Development of digestive enzymes in California halibut Paralichthys californicus larvae. Fish Physiol Biochem 31(1):83–93. https://doi.org/10.1007/s10695-006-0003-8

    Article  CAS  Google Scholar 

  4. Nolasco H (2008) Métodos Utilizados por el Centro de Investigaciones Biológicas del Noroeste (CIBNOR) para la Medición de Digestibilidad in vitro para Camarón. In: Cruz-Suárez L, Villarreal H, Tapia-Salazar M, Nieto-López M, Villarreal-Cavazos D, Ricque Marie D (eds) Manual de metodologías de digestibilidad in vivo e in vitro para ingredientes y dietas para camarón. CYTED, Florianópolis Brasil, p 234

    Google Scholar 

  5. Perera E, Moyano FJ, Díaz M, Perdomo-Morales R, Montero-Alejo V, Rodriguez-Viera L, Alonso E, Carrillo O, Galich GS (2008) Changes in digestive enzymes through developmental and molt stages in the spiny lobster, Panulirus argus. Comp Biochem Physiol B Biochem Mol Biol 151(3):250–256. https://doi.org/10.1016/j.cbpb.2008.07.005

    Article  PubMed  CAS  Google Scholar 

  6. Nolasco H, Moyano-López F, Vega-Villasante F (2011) Partial characterization of pyloric-duodenal lipase of gilthead seabream (Sparus aurata). Fish Physiol Biochem 37(1):43–52. https://doi.org/10.1007/s10695-010-9414-7

    Article  PubMed  CAS  Google Scholar 

  7. Suzer C, Kamacı HO, Çoban D, Yıldırım Ş, Fırat K, Saka Ş (2013) Functional changes in digestive enzyme activities of meagre (Argyrosomus regius; Asso, 1801) during early ontogeny. Fish Physiol Biochem 39(4):967–977. https://doi.org/10.1007/s10695-012-9755-5

    Article  PubMed  CAS  Google Scholar 

  8. Gjellesvik DR, Lombardo D, Walther BT (1992) Pancreatic bile salt dependent lipase from cod (Gadus morhua): purification and properties. Biochim Biophys Acta 1124(2):123–134. https://doi.org/10.1016/0005-2760(92)90088-D

    Article  PubMed  CAS  Google Scholar 

  9. Iijima N, Tanaka S, Ota Y (1998) Purification and characterization of bile salt-activated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish Physiol Biochem 18(1):59–69. https://doi.org/10.1023/a:1007725513389

    Article  CAS  Google Scholar 

  10. Gawlicka A, Parent B, Horn MH, Ross N, Opstad I, Torrissen OJ (2000) Activity of digestive enzymes in yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus): indication of readiness for first feeding. Aquaculture 184(3):303–314. https://doi.org/10.1016/S0044-8486(99)00322-1

    Article  CAS  Google Scholar 

  11. Del Monte A, Nolasco H, Forrellat A, Aragón C, García A, Diaz J (2002) Carrillo O Evidencias de la presencia de lipasas en el hepatopáncreas de Litopenaeus schmitti. In: I Congreso Iberoamericano Virtual de Acuicultura CIVA 2002, pp 207–222

    Google Scholar 

  12. Murray HM, Gallant JW, Perez-Casanova JC, Johnson SC, Douglas SE (2003) Ontogeny of lipase expression in winter flounder. J Fish Biol 62(4):816–833. https://doi.org/10.1046/j.1095-8649.2003.00067.x

    Article  CAS  Google Scholar 

  13. Perez-Casanova JC, Murray HM, Gallant JW, Ross NW, Douglas SE, Johnson SC (2004) Bile salt-activated lipase expression during larval development in the haddock (Melanogrammus aeglefinus). Aquaculture 235(1):601–617. https://doi.org/10.1016/j.aquaculture.2004.02.001

    Article  CAS  Google Scholar 

  14. Bhatnagar T, Boutaiba S, Hacene H, Cayol J-L, Fardeau M-L, Ollivier B, Baratti JC (2005) Lipolytic activity from Halobacteria: screening and hydrolase production. FEMS Microbiol Lett 248(2):133–140. https://doi.org/10.1016/j.femsle.2005.05.044

    Article  PubMed  CAS  Google Scholar 

  15. de la Parra AM, Rosas A, Lazo JP, Viana MT (2007) Partial characterization of the digestive enzymes of Pacific bluefin tuna Thunnus orientalis under culture conditions. Fish Physiol Biochem 33(3):223–231. https://doi.org/10.1007/s10695-007-9134-9

    Article  CAS  Google Scholar 

  16. Kurtovic I, Marshall SN, Zhao X, Simpson BK (2010) Purification and properties of digestive lipases from Chinook salmon (Oncorhynchus tshawytscha) and New Zealand hoki (Macruronus novaezelandiae). Fish Physiol Biochem 36(4):1041–1060. https://doi.org/10.1007/s10695-010-9382-y

    Article  PubMed  CAS  Google Scholar 

  17. Sæle Ø, Nordgreen A, Olsvik PA, Hamre K (2010) Characterization and expression of digestive neutral lipases during ontogeny of Atlantic cod (Gadus morhua). Comp Biochem Physiol A Mol Integr Physiol 157(3):252–259. https://doi.org/10.1016/j.cbpa.2010.07.003

    Article  PubMed  CAS  Google Scholar 

  18. Castro C, Pérez-Jiménez A, Coutinho F, Pousão-Ferreira P, Brandão TM, Oliva-Teles A, Peres H (2013) Digestive enzymes of meagre (Argyrosomus regius) and white seabream (Diplodus sargus). Effects of dietary brewer's spent yeast supplementation. Aquaculture 416–417(Supplement C):322–327. https://doi.org/10.1016/j.aquaculture.2013.09.042

    Article  CAS  Google Scholar 

  19. Ananthi S, Ramasubburayan R, Palavesam A, Immanuel G (2014) Optimization and purification of lipase through solid state fermentation by Bacillus cereus Msu as isolated from the gut of a marine fish Sardinella longiceps. Int J Pharm Pharm Sci 6(5):291–298

    CAS  Google Scholar 

  20. Teymouri M, Karkhane M, Gilavand F, Akhtari J, Marzban A (2016) Extracellular lipase purification from a marine Planomicrobium sp. MR23K and productivity optimization in a pilot-scale submerged bioreactor. Proc Natl Acad Sci India Sect B Biol Sci. https://doi.org/10.1007/s40011-016-0812-1

  21. Solovyev MM, Campoverde C, Öztürk S, Moreira C, Diaz M, Moyano FJ, Estévez A, Gisbert E (2016) Morphological and functional description of the development of the digestive system in meagre (Argyrosomus regius): an integrative approach. Aquaculture 464(Supplement C):381–391. https://doi.org/10.1016/j.aquaculture.2016.07.008

    Article  Google Scholar 

  22. Rueda-López S, Martínez-Montaño E, Viana MT (2017) Biochemical characterization and comparison of pancreatic lipases from the Pacific Bluefin tuna, Thunnus orientalis; Totoaba, Totoaba macdonaldi; and striped bass, Morone saxatilis. J World Aquacult Soc 48(1):156–165. https://doi.org/10.1111/jwas.12372

    Article  CAS  Google Scholar 

  23. Nayak J, Viswanathan Nair PG, Ammu K, Mathew S (2003) Lipase activity in different tissues of four species of fish: rohu (Labeo rohita Hamilton), oil sardine (Sardinella longiceps Linnaeus), mullet (Liza subviridis Valenciennes) and Indian mackerel (Rastrelliger kanagurta Cuvier). J Sci Food Agric 83(11):1139–1142. https://doi.org/10.1002/jsfa.1515

    Article  CAS  Google Scholar 

  24. Fickers P, Ongena M, Destain J, Weekers F, Thonart P (2006) Production and down-stream processing of an extracellular lipase from the yeast Yarrowia lipolytica. Enzym Microb Technol 38(6):756–759. https://doi.org/10.1016/j.enzmictec.2005.08.005

    Article  CAS  Google Scholar 

  25. Cherif S, Fendri A, Miled N, Trabelsi H, Mejdoub H, Gargouri Y (2007) Crab digestive lipase acting at high temperature: purification and biochemical characterization. Biochimie 89(8):1012–1018. https://doi.org/10.1016/j.biochi.2007.02.005

    Article  PubMed  CAS  Google Scholar 

  26. Ranjitha P, Karthy E, Mohankumar A (2009) Purification and characterization of the lipase from marine Vibrio fischeri. Int J Biol 1(2):48–56

    Article  CAS  Google Scholar 

  27. Avenido P, Serrano A (2012) Twig extract of the apple mangrove affects the activities of trypsin, chymotrypsin and lipase in postlarval black tiger shrimp Penaeus monodon at varying feeding frequencies. ELBA Bioflux 4(2):56–61

    Google Scholar 

  28. Baharum S, Nathan M, Ahmad-Mokhtar M (2009) Molecular characterization of lipase producer from local marine environment. J Pure Appl Microbiol 3(2):387–392

    CAS  Google Scholar 

  29. Sivasubramani K, Rajesh Singh J, Jayalakshmi S, Satheesh Kumar S, Selvi C (2013) Production and optimization of lipase from marine derived bacteria. Int J Curr Microbiol App Sci 2(4):126–135

    Google Scholar 

  30. Dorrell N, Martino MC, Stabler RA, Ward SJ, Zhang ZW, McColm AA, Farthing MJG, Wren BW (1999) Characterization of Helicobacter pylori PldA, a phospholipase with a role in colonization of the gastric mucosa. Gastroenterology 117(5):1098–1104. https://doi.org/10.1016/S0016-5085(99)70394-X

    Article  PubMed  CAS  Google Scholar 

  31. Hoehne-Reitan K, Kjørsvik E, Gjellesvik DR (2001) Development of bile salt-dependent lipase in larval turbot. J Fish Biol 58(3):737–745. https://doi.org/10.1111/j.1095-8649.2001.tb00526.x

    Article  CAS  Google Scholar 

  32. Lanio ME, Morera V, Alvarez C, Tejuca M, Gómez T, Pazos F, Besada V, Martınez D, Huerta V, Padrón G, Chávez MA (2001) Purification and characterization of two hemolysins from Stichodactyla helianthus. Toxicon 39(2):187–194. https://doi.org/10.1016/S0041-0101(00)00106-9

    Article  PubMed  CAS  Google Scholar 

  33. Smitha S, Correya N, Philip R (2014) Marine fungi as a potential source of enzymes and antibiotics. Int J Res Mar Sci 3(1):5–10

    Google Scholar 

  34. McKellar RC, Cholette H (2009) Determination of the extracellular lipases of Pseudomonas fluorescens spp. in skim milk with the β-naphthyl caprylate assay. J Dairy Res 53(2):301–312. https://doi.org/10.1017/S0022029900024900

    Article  Google Scholar 

  35. Versaw WK, Cuppett SL, Winters DD, Williams LE (1989) An improved colorimetric assay for bacterial lipase in nonfat dry milk. J Food Sci 54(6):1557–1558. https://doi.org/10.1111/j.1365-2621.1989.tb05159.x

    Article  CAS  Google Scholar 

  36. Nolasco-Soria H, Moyano-López F (2011) Composition and kinetic method for the measurement of lipase activity. Spain Patent WO 2011/101499 A1

    Google Scholar 

  37. Albro PW, Hall RD, Corbett JT, Schroeder J (1985) Activation of nonspecific lipase (EC 3.1.1.-) by bile salts. Biochim Biophys Acta 835(3):477–490. https://doi.org/10.1016/0005-2760(85)90117-1

    Article  PubMed  CAS  Google Scholar 

  38. Guisado-Bourzac F, Romero-Del-Sol DL, Guisán-Seijas JM, Díaz-Brito J, Martins-Soares A, del Monte-Martínez A (2017) Protocolo de purificación en dos etapas de fosfolipasas A2 a partir de la anémona marina Condylactis gigantea. Rev Cubana Quím 29:133–149

    Google Scholar 

  39. Nevalainen TJ, Peuravuori HJ, Quinn RJ, Llewellyn LE, Benzie JAH, Fenner PJ, Winkel KD (2004) Phospholipase A2 in Cnidaria. Comp Biochem Physiol B Biochem Mol Biol 139(4):731–735. https://doi.org/10.1016/j.cbpc.2004.09.006

    Article  PubMed  CAS  Google Scholar 

  40. Vaskovsky VE, Suppes ZS (1972) Phospholipases of marine invertebrates—I. Distribution of phospholipase a. Comp Biochem Physiol B Comp Biochem 43(3):601–609. https://doi.org/10.1016/0305-0491(72)90144-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by CONACYT Grant to 613211 to H.N.S. Authors are thankful to Patricia Hinojosa (CIBNOR) by her technical support. This contribution has received partial funding from the European Union’s Seventh Framework Programme for research, technological development, and demonstration (KBBE-2013-07 single stage, GA 603121, DIVERSIFY, as well as from the the Programa Iberoamericano de Ciencia y TecnologÚa para el Desarrollo CYTED, Network LARVAplus (ref. 117RT0521).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Nolasco-Soria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nolasco-Soria, H. et al. (2018). Lipase and Phospholipase Activity Methods for Marine Organisms. In: Sandoval, G. (eds) Lipases and Phospholipases. Methods in Molecular Biology, vol 1835. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8672-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8672-9_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8671-2

  • Online ISBN: 978-1-4939-8672-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics