Skip to main content

Lipase-Catalyzed Acetylation and Esterification of Bile Acids

  • Protocol
  • First Online:
Book cover Lipases and Phospholipases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1835))

Abstract

In this chapter we describe the application of lipases as catalysts in reactions on a relevant family of steroids: the bile acids. Twenty three monoacetyl, diacetyl, and ester derivatives of deoxycholic, chenodeoxycholic, lithocholic, and cholic acids, 15 of them new compounds, were obtained through lipase-catalyzed acetylation, esterification, and alcoholysis reactions in very good to excellent yield and a highly regioselective way. Among them, acetylated ester products, in which the lipase catalyzed both reactions in one pot, were obtained. The influence of various reaction parameters in the enzymatic reactions, such as enzyme source, nucleophile/substrate ratio, enzyme/substrate ratio, solvent, and temperature, was studied. Some of the reported products are novel, and it is not possible to obtain them satisfactorily by following traditional synthetic procedures. Due to its singular structure containing three hydroxyl groups, cholic acid showed a different behavior in the enzymatic reactions, from that observed for the other three bile acids studied. In order to shed light to different behaviors of bile acids in the enzymatic reactions, molecular modeling was applied to substrates and some derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Setchell KD, Kritchevsky D, Nair PP (2012) The bile acids: chemistry, physiology, and metabolism: volume 4: methods and applications. Springer Science & Business Media, Berlin

    Google Scholar 

  2. Hofmann AF, Hagey LR (2014) Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res 55(8):1553–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yu D, Mattern DL, Forman BM (2012) An improved synthesis of 6α-ethylchenodeoxycholic acid (6ECDCA), a potent and selective agonist for the Farnesoid X Receptor (FXR). Steroids 77(13):1335–1338. https://doi.org/10.1016/j.steroids.2012.09.002

    Article  PubMed  CAS  Google Scholar 

  4. Bansal S, Singh M, Kidwai S, Bhargava P, Singh A, Sreekanth V, Singh R, Bajaj A (2014) Bile acid amphiphiles with tunable head groups as highly selective antitubercular agents. Med Chem Commun 5(11):1761–1768

    Article  CAS  Google Scholar 

  5. Brossard D, El Kihel L, Clément M, Sebbahi W, Khalid M, Roussakis C, Rault S (2010) Synthesis of bile acid derivatives and in vitro cytotoxic activity with pro-apoptotic process on multiple myeloma (KMS-11), glioblastoma multiforme (GBM), and colonic carcinoma (HCT-116) human cell lines. Eur J Med Chem 45(7):2912–2918

    Article  CAS  PubMed  Google Scholar 

  6. Hassan N, Ahad A, Ali M, Ali J (2010) Chemical permeation enhancers for transbuccal drug delivery. Expert Opin Drug Deliv 7(1):97–112

    Article  CAS  PubMed  Google Scholar 

  7. Yang L, Zhang H, Fawcett JP, Mikov M, Tucker IG (2011) Effect of bile salts on the transport of morphine-6-glucuronide in rat brain endothelial cells. J Pharm Sci 100(4):1516–1524

    Article  CAS  PubMed  Google Scholar 

  8. Yang L, Fawcett JP, Østergaard J, Zhang H, Tucker IG (2011) Mechanistic studies of the effect of bile salts on rhodamine 123 uptake into RBE4 cells. Mol Pharm 9(1):29–36

    Article  CAS  PubMed  Google Scholar 

  9. Jampilek J, Brychtova K (2012) Azone analogues: classification, design, and transdermal penetration principles. Med Res Rev 32(5):907–947

    Article  CAS  PubMed  Google Scholar 

  10. Carrea G, Riva S (2008) Organic synthesis with enzymes in non-aqueous media. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  11. Baldessari A, Iglesias LE (2012) Lipases in green chemistry: acylation and alcoholysis on steroids and nucleosides. Methods Mol Biol 861:457–469

    Article  CAS  PubMed  Google Scholar 

  12. Hall M, Kroutil W, Faber K (2013) The evolving role of biocatalysis in asymmetric synthesis. Asymmetric Synthesis II: More Methods and Applications: 221–231

    Google Scholar 

  13. Gotor V, Alfonso I, García-Urdiales E (2008) Asymmetric organic synthesis with enzymes. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  14. Ferrero M, Gotor V, Patel R (2000) Stereoselective biocatalysis. Marcel Dekker, New York, p 289

    Google Scholar 

  15. Baldessari A, Mangone CP, Gros EG (1998) Lipase-catalyzed acylation and deacylation reactions of pyridoxine, a member of vitamin-B6 group. Helv Chim Acta 81(12):2407–2413

    Article  CAS  Google Scholar 

  16. Rustoy EM, Baldessari A (2005) An efficient chemoenzymatic synthesis of the bactericide lapyrium chloride. Eur J Org Chem 2005(21):4628–4632

    Article  CAS  Google Scholar 

  17. Monsalve LN, Rosselli S, Bruno M, Baldessari A (2005) Enzyme-catalysed transformations of ent-Kaurane Diterpenoids. Eur J Org Chem 2005(10):2106–2115

    Article  CAS  Google Scholar 

  18. Monsalve LN, Rosselli S, Bruno M, Baldessari A (2009) Lipase-catalysed preparation of acyl derivatives of the germacranolide cnicin. J Mol Catal B 57(1):40–47

    Article  CAS  Google Scholar 

  19. García Liñares G, Parraud G, Labriola C, Baldessari A (2012) Chemoenzymatic synthesis and biological evaluation of 2- and 3-hydroxypyridine derivatives against Leishmania mexicana. Bioorg Med Chem 20(15):4614–4624. https://doi.org/10.1016/j.bmc.2012.06.028

    Article  PubMed  CAS  Google Scholar 

  20. García Liñares G, Arroyo Mañez P, Baldessari A (2014) Lipase-catalyzed synthesis of substituted phenylacetamides: hammett analysis and computational study of the enzymatic aminolysis. Eur J Org Chem 2014(29):6439–6450

    Article  CAS  Google Scholar 

  21. Baldessari A, Maier MS, Gros EG (1995) Enzymatic deacetylation of steroids bearing labile functions. Tetrahedron Lett 36(25):4349–4352

    Article  CAS  Google Scholar 

  22. Baldessari A, Bruttomesso AC, Gros EG (1996) Lipase-catalysed regioselective deacetylation of androstane derivatives. Helv Chim Acta 79(4):999–1004

    Article  CAS  Google Scholar 

  23. Bruttomesso AC, Baldessari A (2004) Lipase-catalysed deacetylation of androstane and pregnane derivatives: influence of ring D substitution. J Mol Catal B 29(1):149–153

    Article  CAS  Google Scholar 

  24. Bruttomesso AC, Tiscornia A, Baldessari A (2004) Lipase-catalyzed preparation of biologically active esters of dehydroepiandrosterone. Biocatal Biotransformation 22(3):215–220

    Article  CAS  Google Scholar 

  25. Rustoy EM, Arias IER, Baldessari A (2005) Regioselective enzymatic synthesis of estradiol 17-fatty acid esters. ARKIVOC 12:175–188

    Google Scholar 

  26. Monsalve LN, Machado Rada MY, Ghini AA, Baldessari A (2008) An efficient enzymatic preparation of 20-pregnane succinates: chemoenzymatic synthesis of 20β-hemisuccinyloxy-5αH-pregnan-3-one. Tetrahedron 64(8):1721–1730. https://doi.org/10.1016/j.tet.2007.12.006

    Article  CAS  Google Scholar 

  27. Quintana PG, Baldessari A (2009) Lipase-catalyzed regioselective preparation of fatty acid esters of hydrocortisone. Steroids 74(13):1007–1014

    Article  CAS  PubMed  Google Scholar 

  28. Quintana PG, Guillén M, Marciello M, Valero F, Palomo JM, Baldessari A (2012) Immobilized heterologous Rhizopus oryzae lipase as an efficient catalyst in the acetylation of cortexolone. Eur J Org Chem 23:4306–4312

    Article  CAS  Google Scholar 

  29. Baldessari A (2012) Lipases as catalysts in synthesis of fine chemicals. Methods Mol Biol 861:445–456

    Article  CAS  PubMed  Google Scholar 

  30. Quintana PG, Canet A, Marciello M, Valero F, Palomo JM, Baldessari A (2015) Enzyme-catalyzed preparation of chenodeoxycholic esters by an immobilized heterologous Rhizopus oryzae lipase. J Mol Catal B 118:36–42

    Article  CAS  Google Scholar 

  31. Whittall J, Sutton PW (2009) Practical methods for biocatalysis and biotransformations. John Wiley & Sons, Chichester

    Book  Google Scholar 

  32. García Liñares G, Antonela Zígolo M, Simonetti L, Longhi SA, Baldessari A (2015) Enzymatic synthesis of bile acid derivatives and biological evaluation against Trypanosoma cruzi. Bioorg Med Chem 23(15):4804–4814. https://doi.org/10.1016/j.bmc.2015.05.035

    Article  PubMed  CAS  Google Scholar 

  33. Zígolo MA, García Liñares G, Baldessari A (2016) New cholic acid derivatives: biocatalytic synthesis and molecular docking study. Steroids 107:10–19. https://doi.org/10.1016/j.steroids.2015.12.014

    Article  PubMed  CAS  Google Scholar 

  34. Dayal B, Speck J, Bagan E, Tint G, Salen G (1981) p-Toluenesulfonic acid/methanol: mild reagent for the preparation of bile acid methyl esters. Steroids 37(2):239–242

    Article  CAS  PubMed  Google Scholar 

  35. Bai X, Barnes C, Dias JR (2009) Synthesis and comparative spectroscopic analysis of two chenodeoxycholic acid (CDCA) derivatives with closely related 7α-ester moieties. Tetrahedron Lett 50(5):503–505

    Article  CAS  Google Scholar 

  36. Uekawa T, Ishigami K, Kitahara T (2004) Short-step synthesis of chenodiol from stigmasterol. Biosci Biotechnol Biochem 68(6):1332–1337

    Article  CAS  PubMed  Google Scholar 

  37. Hu X, Zhang Z, Zhang X, Li Z, Zhu X (2005) Selective acylation of cholic acid derivatives with multiple methacrylate groups. Steroids 70(8):531–537

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Baldessari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Baldessari, A., García Liñares, G. (2018). Lipase-Catalyzed Acetylation and Esterification of Bile Acids. In: Sandoval, G. (eds) Lipases and Phospholipases. Methods in Molecular Biology, vol 1835. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8672-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8672-9_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8671-2

  • Online ISBN: 978-1-4939-8672-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics