Skip to main content

Targeting Phospholipase D Genetically and Pharmacologically for Studying Leukocyte Function

  • Protocol
  • First Online:
Lipases and Phospholipases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1835))

Abstract

Phospholipase D (PLD), is a protein that breaks down phospholipids, maintaining structural integrity and remodeling of cellular or intracellular membranes, as well as mediating protein trafficking and cytoskeletal dynamics during cell motility. One of the reaction products of PLD action is phosphatidic acid (PA). PA is a mitogen involved in a large variety of physiological cellular functions, such as cell growth, cell cycle progression, and cell motility. We have chosen as cell models the leukocyte polymorphonuclear neutrophil and the macrophage as examples of cell motility. We provide a three-part method for targeting PLD genetically and pharmacologically to study its role in cell migration. In the first part, we begin with genetically deficient mice PLD1-KO and PLD2-KO. We describe bone marrow neutrophil (BMN) isolation; BMN is labeled fluorescently and can be used for studying tissue-damaging neutrophilia in ischemia-reperfusion injury (IRI). In the second part, we begin also with PLD1-KO and PLD2-KO and prepare bone marrow-derived macrophages (BMDM), first from monocytes and then inducing macrophage differentiation in culture with continuous incubation of cytokines. We use BMDM to find experimentally if PLD woul play a role in cholesterol phagocytosis, which is the first step in atherosclerosis progression. In the third part, we study PLD function in BMN and BMDM with PLD enzyme pharmacological inhibitors instead of genetically deficient mice, to ascertain the particular contributions of isoforms PLD1 and PLD2 on leukocyte function. By using the three-step thorough approach, we could understand the molecular underpinning of PLD in the pathological conditions indicated above, IRI-neutrophilia and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frohman MA, Sung TC, Morris AJ (1999) Mammalian phospholipase D structure and regulation. Biochim Biophys Acta 1439(2):175–186

    Article  CAS  PubMed  Google Scholar 

  2. Exton JH (2000) Phospholipase D. Ann N Y Acad Sci 905:61–68

    Article  CAS  PubMed  Google Scholar 

  3. Powner DJ, Wakelam MJ (2002) The regulation of phospholipase D by inositol phospholipids and small GTPases. FEBS Lett 531(1):62–64

    Article  CAS  PubMed  Google Scholar 

  4. Cockcroft S (1996) Phospholipase D: regulation by GTPases and protein kinase C and physiological relevance. Prog Lipid Res 35(4):345–370

    Article  CAS  PubMed  Google Scholar 

  5. Foster DA, Xu L (2003) Phospholipase D in cell proliferation and cancer. Mol Cancer Res 1(11):789–800

    PubMed  CAS  Google Scholar 

  6. Chi X, Wang S, Huang Y, Stamnes M, Chen JL (2013) Roles of rho GTPases in intracellular transport and cellular transformation. Int J Mol Sci 14(4):7089–7108. https://doi.org/10.3390/ijms14047089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Jang JH, Lee CS, Hwang D, Ryu SH (2012) Understanding of the roles of phospholipase D and phosphatidic acid through their binding partners. Prog Lipid Res 51(2):71–81. https://doi.org/10.1016/j.plipres.2011.12.003

    Article  PubMed  CAS  Google Scholar 

  8. Pleskot R, Li J, Zarsky V, Potocky M, Staiger CJ (2013) Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. Trends Plant Sci 18(9):496–504. https://doi.org/10.1016/j.tplants.2013.04.005

    Article  PubMed  CAS  Google Scholar 

  9. Rudge SA, Wakelam MJ (2009) Inter-regulatory dynamics of phospholipase D and the actin cytoskeleton. Biochim Biophys Acta 1791(9):856–861. https://doi.org/10.1016/j.bbalip.2009.04.008

    Article  PubMed  CAS  Google Scholar 

  10. Park SH, Chun YH, Ryu SH, Suh PG, Kim H (1998) Assignment of human PLD1 to human chromosome band 3q26 by fluorescence in situ hybridization. Cytogenet Cell Genet 82(3–4):224

    Article  CAS  PubMed  Google Scholar 

  11. Steed PM, Clark KL, Boyar WC, Lasala DJ (1998) Characterization of human PLD2 and the analysis of PLD isoform splice variants. FASEB J 12(13):1309–1317

    Article  CAS  PubMed  Google Scholar 

  12. Brown HA, Thomas PG, Lindsley CW (2017) Targeting phospholipase D in cancer, infection and neurodegenerative disorders. Nat Rev Drug Discov 16(5):351–367. https://doi.org/10.1038/nrd.2016.252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gomez-Cambronero J, Morris AJ, Henkels KM (2017) PLD protein-protein interactions with signaling molecules and modulation by PA. Methods Enzymol 583:327–357. https://doi.org/10.1016/bs.mie.2016.09.042

    Article  PubMed  CAS  Google Scholar 

  14. Henkels KM, Mahankali M, Gomez-Cambronero J (2013) Increased cell growth due to a new lipase-GEF (phospholipase D2) fastly acting on Ras. Cell Signal 25(1):198–205. https://doi.org/10.1016/j.cellsig.2012.08.010

    Article  PubMed  CAS  Google Scholar 

  15. Gomez-Cambronero J (2011) The exquisite regulation of PLD2 by a wealth of interacting proteins: S6K, Grb2, Sos, WASp and Rac2 (and a surprise discovery: PLD2 is a GEF). Cell Signal 23(12):1885–1895. https://doi.org/10.1016/j.cellsig.2011.06.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Munck A, Bohm C, Seibel NM, Hashemol Hosseini Z, Hampe W (2005) Hu-K4 is a ubiquitously expressed type 2 transmembrane protein associated with the endoplasmic reticulum. FEBS J 272(7):1718–1726. https://doi.org/10.1111/j.1742-4658.2005.04601.x

    Article  PubMed  CAS  Google Scholar 

  17. Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, Guerreiro R, Harari O, Norton J, Budde J, Bertelsen S, Jeng AT, Cooper B, Skorupa T, Carrell D, Levitch D, Hsu S, Choi J, Ryten M, Consortium UKBE, Hardy J, Ryten M, Trabzuni D, Weale ME, Ramasamy A, Smith C, Sassi C, Bras J, Gibbs JR, Hernandez DG, Lupton MK, Powell J, Forabosco P, Ridge PG, Corcoran CD, Tschanz JT, Norton MC, Munger RG, Schmutz C, Leary M, Demirci FY, Bamne MN, Wang X, Lopez OL, Ganguli M, Medway C, Turton J, Lord J, Braae A, Barber I, Brown K, Alzheimer's Research UKC, Passmore P, Craig D, Johnston J, McGuinness B, Todd S, Heun R, Kolsch H, Kehoe PG, Hooper NM, Vardy ER, Mann DM, Pickering-Brown S, Brown K, Kalsheker N, Lowe J, Morgan K, David Smith A, Wilcock G, Warden D, Holmes C, Pastor P, Lorenzo-Betancor O, Brkanac Z, Scott E, Topol E, Morgan K, Rogaeva E, Singleton AB, Hardy J, Kamboh MI, St George-Hyslop P, Cairns N, Morris JC, Kauwe JS, Goate AM (2014) Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature 505(7484):550–554. https://doi.org/10.1038/nature12825

    Article  PubMed  CAS  Google Scholar 

  18. Wang C, Tan L, Wang HF, Yu WJ, Liu Y, Jiang T, Tan MS, Hao XK, Zhang DQ, Yu JT, Alzheimer’s Disease Neuroimaging I (2015) Common variants in PLD3 and correlation to amyloid-related phenotypes in Alzheimer’s disease. J Alzheimers Dis 46(2):491–495. https://doi.org/10.3233/JAD-150110

    Article  PubMed  CAS  Google Scholar 

  19. Otani Y, Yamaguchi Y, Sato Y, Furuichi T, Ikenaka K, Kitani H, Baba H (2011) PLD$ is involved in phagocytosis of microglia: expression and localization changes of PLD4 are correlated with activation state of microglia. PLoS One 6(11):e27544. https://doi.org/10.1371/journal.pone.0027544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gao L, Zhou Y, Zhou SX, Yu XJ, Xu JM, Zuo L, Luo YH, Li XA (2017) PLD4 promotes M1 macrophages to perform antitumor effects in colon cancer cells. Oncol Rep 37(1):408–416. https://doi.org/10.3892/or.2016.5216

    Article  PubMed  Google Scholar 

  21. Kabayama Y, Toh H, Katanaya A, Sakurai T, Chuma S, Kuramochi-Miyagawa S, Saga Y, Nakano T, Sasaki H (2017) Roles of MIWI, MILI and PLD6 in small RNA regulation in mouse growing oocytes. Nucleic Acids Res 45(9):5387–5398. https://doi.org/10.1093/nar/gkx027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Roovers EF, Rosenkranz D, Mahdipour M, Han CT, He N, Chuva de Sousa Lopes SM, van der Westerlaken LA, Zischler H, Butter F, Roelen BA, Ketting RF (2015) Piwi proteins and piRNAs in mammalian oocytes and early embryos. Cell Rep 10(12):2069–2082. https://doi.org/10.1016/j.celrep.2015.02.062

    Article  PubMed  CAS  Google Scholar 

  23. Huang H, Gao Q, Peng X, Choi SY, Sarma K, Ren H, Morris AJ, Frohman MA (2011) piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev Cell 20(3):376–387. https://doi.org/10.1016/j.devcel.2011.01.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Huang HY, Houwing S, Kaaij LJ, Meppelink A, Redl S, Gauci S, Vos H, Draper BW, Moens CB, Burgering BM, Ladurner P, Krijgsveld J, Berezikov E, Ketting RF (2011) Tdrd1 acts as a molecular scaffold for Piwi proteins and piRNA targets in zebrafish. EMBO J 30(16):3298–3308. https://doi.org/10.1038/emboj.2011.228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Su W, Chen Q, Frohman MA (2009) Targeting phospholipase D with small-molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future Oncol 5(9):1477–1486. https://doi.org/10.2217/fon.09.110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lewis JA, Scott SA, Lavieri R, Buck JR, Selvy PE, Stoops SL, Armstrong MD, Brown HA, Lindsley CW (2009) Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part I: impact of alternative halogenated privileged structures for PLD1 specificity. Bioorg Med Chem Lett 19(7):1916–1920. https://doi.org/10.1016/j.bmcl.2009.02.057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. O’Reilly MC, Oguin TH 3rd, Scott SA, Thomas PG, Locuson CW, Morrison RD, Daniels JS, Brown HA, Lindsley CW (2014) Discovery of a highly selective PLD2 inhibitor (ML395): a new probe with improved physiochemical properties and broad-spectrum antiviral activity against influenza strains. ChemMedChem 9(12):2633–2637. https://doi.org/10.1002/cmdc.201402333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Oguin TH 3rd, Sharma S, Stuart AD, Duan S, Scott SA, Jones CK, Daniels JS, Lindsley CW, Thomas PG, Brown HA (2014) Phospholipase D facilitates efficient entry of influenza virus, allowing escape from innate immune inhibition. J Biol Chem 289(37):25405–25417. https://doi.org/10.1074/jbc.M114.558817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chen Q, Hongu T, Sato T, Zhang Y, Ali W, Cavallo JA, van der Velden A, Tian H, Di Paolo G, Nieswandt B, Kanaho Y, Frohman MA (2012) Key roles for the lipid signaling enzyme phospholipase d1 in the tumor microenvironment during tumor angiogenesis and metastasis. Sci Signal 5(249):ra79. https://doi.org/10.1126/scisignal.2003257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Henkels KM, Boivin GP, Dudley ES, Berberich SJ, Gomez-Cambronero J (2013) Phospholipase D (PLD) drives cell invasion, tumor growth and metastasis in a human breast cancer xenograph model. Oncogene 32(49):5551–5562. https://doi.org/10.1038/onc.2013.207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Saidani N, Botte CY, Deligny M, Bonneau AL, Reader J, Lasselin R, Merer G, Niepceron A, Brossier F, Cintrat JC, Rousseau B, Birkholtz LM, Cesbron-Delauw MF, Dubremetz JF, Mercier C, Vial H, Lopez R, Marechal E (2014) Discovery of compounds blocking the proliferation of Toxoplasma gondii and Plasmodium falciparum in a chemical space based on piperidinyl-benzimidazolone analogs. Antimicrob Agents Chemother 58(5):2586–2597. https://doi.org/10.1128/AAC.01445-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Iyer SS, Agrawal RS, Thompson CR, Thompson S, Barton JA, Kusner DJ (2006) Phospholipase D1 regulates phagocyte adhesion. J Immunol 176(6):3686–3696

    Article  CAS  PubMed  Google Scholar 

  33. Rossi F, Grzeskowiak M, Della Bianca V, Calzetti F, Gandini G (1990) Phosphatidic acid and not diacylglycerol generated by phospholipase D is functionally linked to the activation of the NADPH oxidase by FMLP in human neutrophils. Biochem Biophys Res Commun 168(1):320–327

    Article  CAS  PubMed  Google Scholar 

  34. Henkels KM, Frondorf K, Gonzalez-Mejia ME, Doseff AL, Gomez-Cambronero J (2011) IL-8-induced neutrophil chemotaxis is mediated by Janus kinase 3 (JAK3). FEBS Lett 585(1):159–166. https://doi.org/10.1016/j.febslet.2010.11.031

    Article  PubMed  CAS  Google Scholar 

  35. Gomez-Cambronero J, Di Fulvio M, Knapek K (2007) Understanding phospholipase D (PLD) using leukocytes: PLD involvement in cell adhesion and chemotaxis. J Leukoc Biol 82(2):272–281. https://doi.org/10.1189/jlb.0107033

    Article  PubMed  CAS  Google Scholar 

  36. Nishikimi A, Fukuhara H, Su W, Hongu T, Takasuga S, Mihara H, Cao Q, Sanematsu F, Kanai M, Hasegawa H, Tanaka Y, Shibasaki M, Kanaho Y, Sasaki T, Frohman MA, Fukui Y (2009) Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis. Science 324(5925):384–387. https://doi.org/10.1126/science.1170179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Knapek K, Frondorf K, Post J, Short S, Cox D, Gomez-Cambronero J (2010) The molecular basis of phospholipase D2-induced chemotaxis: elucidation of differential pathways in macrophages and fibroblasts. Mol Cell Biol 30(18):4492–4506. https://doi.org/10.1128/MCB.00229-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kantonen S, Hatton N, Mahankali M, Henkels KM, Park H, Cox D, Gomez-Cambronero J (2011) A novel phospholipase D2-Grb2-WASp heterotrimer regulates leukocyte phagocytosis in a two-step mechanism. Mol Cell Biol 31(22):4524–4537. https://doi.org/10.1128/MCB.05684-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Swamydas M, Lionakis MS (2013) Isolation, purification and labeling of mouse bone marrow neutrophils for functional studies and adoptive transfer experiments. J Vis Exp 77:e50586. https://doi.org/10.3791/50586

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Gomez-Cambronero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gomez-Cambronero, J., Ganesan, R. (2018). Targeting Phospholipase D Genetically and Pharmacologically for Studying Leukocyte Function. In: Sandoval, G. (eds) Lipases and Phospholipases. Methods in Molecular Biology, vol 1835. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8672-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8672-9_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8671-2

  • Online ISBN: 978-1-4939-8672-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics