Skip to main content

CRISPR/Cas9 Gene Editing In Vitro and in Retinal Cells In Vivo

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1834))

Abstract

CRISPR/Cas9 is an efficient tool to knock down specific genes in various organisms. In this chapter, we describe how to assess knockdown of human rhodopsin (RHO) gene carrying the P23H mutation in vitro, in engineered HeLa cells, and in vivo, in P23H RHO transgenic mice. To this aim, we report two molecular assays: site-specific PCR on P23H RHO cells treated with CRISPR/Cas9 and Western blotting analysis on retinal cells prepared from P23H RHO transgenic mice electroporated with CRISPR/Cas9 and GFP plasmids.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang F, Wen Y, Guo X (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 23(R1):R40–R46. https://doi.org/10.1093/hmg/ddu125

    Article  CAS  PubMed  Google Scholar 

  3. Hilton IB, Gersbach CA (2015) Enabling functional genomics with genome engineering. Genome Res 25(10):1442–1455. https://doi.org/10.1101/gr.190124.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maeder ML, Gersbach CA (2016) Genome-editing technologies for gene and cell therapy. Mol Ther 24(3):430–446. https://doi.org/10.1038/mt.2016.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y (2017) Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 23(9):2255–2266. https://doi.org/10.1158/1078-0432.CCR-16-1300

    Article  CAS  PubMed  Google Scholar 

  6. Cyranoski D (2016) Chinese scientists to pioneer first human CRISPR trial. Nature 535(7613):476–477. https://doi.org/10.1038/nature.2016.20302

    Article  CAS  PubMed  Google Scholar 

  7. Bakondi B, Lv W, Lu B, Jones MK, Tsai Y, Kim KJ, Levy R, Akhtar AA, Breunig JJ, Svendsen CN, Wang S (2015) In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther. https://doi.org/10.1038/mt.2015.220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Latella MC, Di Salvo MT, Cocchiarella F, Benati D, Grisendi G, Comitato A, Marigo V, Recchia A (2016) In vivo editing of the human mutant rhodopsin gene by electroporation of plasmid-based CRISPR/Cas9 in the mouse retina. Mol Ther Nucleic Acids 5(11):e389. https://doi.org/10.1038/mtna.2016.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ruan GX, Barry E, Yu D, Lukason M, Cheng SH, Scaria A (2017) CRISPR/Cas9-mediated genome editing as a therapeutic approach for Leber congenital Amaurosis 10. Mol Ther 25(2):331–341. https://doi.org/10.1016/j.ymthe.2016.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qiu P, Shandilya H, D'Alessio JM, O'Connor K, Durocher J, Gerard GF (2004) Mutation detection using surveyor nuclease. BioTechniques 36(4):702–707

    Article  CAS  PubMed  Google Scholar 

  11. Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ (2010) A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol 649:247–256. https://doi.org/10.1007/978-1-60761-753-2_15

    Article  CAS  PubMed  Google Scholar 

  12. Kim HJ, Lee HJ, Kim H, Cho SW, Kim JS (2009) Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res 19(7):1279–1288. https://doi.org/10.1101/gr.089417.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brinkman EK, Chen T, Amendola M, van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42(22):e168. https://doi.org/10.1093/nar/gku936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park J, Lim K, Kim JS, Bae S (2017) Cas-analyzer: an online tool for assessing genome editing results using NGS data. Bioinformatics 33(2):286–288. https://doi.org/10.1093/bioinformatics/btw561

    Article  CAS  PubMed  Google Scholar 

  15. Humphries MM, Rancourt D, Farrar GJ, Kenna P, Hazel M, Bush RA, Sieving PA, Sheils DM, McNally N, Creighton P, Erven A, Boros A, Gulya K, Capecchi MR, Humphries P (1997) Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nat Genet 15(2):216–219. https://doi.org/10.1038/ng0297-216

    Article  CAS  PubMed  Google Scholar 

  16. Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA (2015) Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 6:6244. https://doi.org/10.1038/ncomms7244

    Article  CAS  PubMed  Google Scholar 

  17. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX, Asokan A, Zhang F, Duan D, Gersbach CA (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351(6271):403–407. https://doi.org/10.1126/science.aad5143

    Article  CAS  PubMed  Google Scholar 

  18. Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(6271):407–411. https://doi.org/10.1126/science.aad5177

    Article  CAS  PubMed  Google Scholar 

  19. Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR, Chamberlain JS (2017) Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8:14454. https://doi.org/10.1038/ncomms14454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S, Uchida N, Hendel A, Narla A, Majeti R, Weinberg KI, Porteus MH (2016) CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature 539(7629):384–389. https://doi.org/10.1038/nature20134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16(22):10881–10890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hall TA (1999) BioEdit: A user-Friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Fondazione Roma, Call for Retinitis Pigmentosa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Recchia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Benati, D., Marigo, V., Recchia, A. (2019). CRISPR/Cas9 Gene Editing In Vitro and in Retinal Cells In Vivo. In: Weber, B.H.F., Langmann, T. (eds) Retinal Degeneration. Methods in Molecular Biology, vol 1834. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8669-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8669-9_4

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8668-2

  • Online ISBN: 978-1-4939-8669-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics