Skip to main content

Nanoparticles Targeting Retinal and Choroidal Capillaries In Vivo

  • Protocol
Book cover Retinal Degeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1834))

Abstract

The functionalization of nanoparticles with specific receptor ligands enables their accumulation in targeted tissues and can be used therapeutically to transport drugs or for diagnostic purposes (Parveen et al., Nanomedicine 8:147–166, 2012). We could recently show that targeting endothelial cells in retinal and choroidal capillaries can be realized even under physiological conditions using quantum dots as model nanoparticles functionalized with an integrin-binding peptide (Pollinger et al., Proc Natl Acad Sci 110:6115–6120, 2013). Even though the chemistry that we used was well described in the literature and may be considered standard for the purpose, there are a number of preparation steps that are delicate and deserve special attention. It is, therefore, our intention to describe step by step the critical methods of ligand immobilization on quantum dot surfaces to facilitate the reader to reproduce our work. Here we describe the chemical modification of quantum dots with c(RGDfC) as targeting peptide that allows the resulting modified nanoparticles to adhere to endothelial cells also in the retinal tissue. We illustrate the properties of the resulting particles by showing some of the in vitro results from our previous studies. Doing so, we concomitantly encourage the reader to check particles intended for targeting cells in vivo first by extensive in vitro analysis of particle interaction with cells by the means of flow cytometry and confocal microscopy to confirm the successful functionalization. Only then the application of functionalized quantum dots into the systemic circulation of mice led to the desired localization of nanoparticles in the retinal and choroidal blood vessels (Pollinger et al., Proc Natl Acad Sci 110:6115–6120, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giuliari GP (2012) Diabetic retinopathy: current and new treatment options. Curr Diabetes Rev 8:32–41. https://doi.org/10.2174/157339912798829188

    Article  PubMed  Google Scholar 

  2. Kumar B, Gupta SK, Saxena R, Srivastava S (2012) Current trends in the pharmacotherapy of diabetic retinopathy. J Postgrad Med 58:132. https://doi.org/10.4103/0022-3859.97176

    Article  CAS  PubMed  Google Scholar 

  3. Avery RL, Pieramici DJ, Rabena MD et al (2006) Intravitreal bevacizumab (avastin) for neovascular age-related macular degeneration. Ophthalmology 113:363–372.e5. https://doi.org/10.1016/j.ophtha.2005.11.019

    Article  PubMed  Google Scholar 

  4. Maeshima K, Utsugi-Sutoh N, Otani T, Kishi S (2004) Progressive enlargement of scattered photocoagulation scars in diabetic retinopathy. Retina 24:507–511

    Article  Google Scholar 

  5. Martidis A, Duker JS, Greenberg PB et al (2002) Intravitreal triamcinolone for refractory diabetic macular edema. Ophthalmology 109:920–927. https://doi.org/10.1016/S0161-6420(02)00975-2

    Article  PubMed  Google Scholar 

  6. Moshfeghi DM, Kaiser PK, Scott IU et al (2003) Acute endophthalmitis following intravitreal triamcinolone acetonide injection. Am J Ophthalmol 136:791–796. https://doi.org/10.1016/S0002-9394(03)00483-5

    Article  CAS  PubMed  Google Scholar 

  7. Grunwald JE, Daniel E, Huang J et al (2014) Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology 121:150–161. https://doi.org/10.1016/j.ophtha.2013.08.015

    Article  PubMed  Google Scholar 

  8. Campbell ID, Humphries MJ (2011) Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 3:a004994. https://doi.org/10.1101/cshperspect.a004994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh SR, Grossniklaus HE, Kang SJ et al (2009) Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV. Gene Ther 16:645–659. https://doi.org/10.1038/gt.2008.185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salehi-Had H, Roh MI, Giani A et al (2011) Utilizing targeted gene therapy with nanoparticles binding alpha v Beta 3 for imaging and treating Choroidal neovascularization. PLoS One 6:e18864. https://doi.org/10.1371/journal.pone.0018864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krzystolik MG, Afshari MA, Adamis AP et al (2002) Prevention of experimental Choroidal neovascularization with Intravitreal anti–vascular endothelial growth factor antibody fragment. Arch Ophthalmol 120:338–346. https://doi.org/10.1001/archopht.120.3.338

    Article  CAS  PubMed  Google Scholar 

  12. Spilsbury K, Garrett KL, Shen W-Y et al (2000) Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of Choroidal neovascularization. Am J Pathol 157:135–144. https://doi.org/10.1016/S0002-9440(10)64525-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoshida T, Gong J, Xu Z et al (2012) Inhibition of pathological retinal angiogenesis by the integrin αvβ3 antagonist tetraiodothyroacetic acid (tetrac). Exp Eye Res 94:41–48. https://doi.org/10.1016/j.exer.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  14. Pollinger K, Hennig R, Ohlmann A et al (2013) Ligand-functionalized nanoparticles target endothelial cells in retinal capillaries after systemic application. Proc Natl Acad Sci 110:6115–6120. https://doi.org/10.1073/pnas.1220281110

    Article  CAS  PubMed  Google Scholar 

  15. Jacot JL, Sredy J (1999) Emerging therapeutics for diabetic retinopathy: potential therapies for the new millennium. Emerg Therap Targets 3:307–335. https://doi.org/10.1517/14728222.3.2.307

    Article  CAS  Google Scholar 

  16. Hild WA, Breunig M, Goepferich A (2008) Quantum dots - nano-sized probes for the exploration of cellular and intracellular targeting. Eur J Pharm Biopharm 68:153–168. https://doi.org/10.1016/j.ejpb.2007.06.009

    Article  CAS  PubMed  Google Scholar 

  17. Walling MA, Novak JA, Shepard JRE (2009) Quantum dots for live cell and in vivo imaging. Int J Mol Sci 10:441–491. https://doi.org/10.3390/ijms10020441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johnson ID (2010) The molecular probes handbook: a guide to fluorescent probes and labeling technologies, 11th edn. Life Technologies Corporation, Carlsbad, CA

    Google Scholar 

  19. Aumailley M, Gurrath M, Müller G et al (1991) Arg-Gly-Asp constrained within cyclic pentapoptides strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett 291:50–54. https://doi.org/10.1016/0014-5793(91)81101-D

    Article  CAS  PubMed  Google Scholar 

  20. Pfaff M, Tangemann K, Müller B et al (1994) Selective recognition of cyclic RGD peptides of NMR defined conformation by alpha IIb beta 3, alpha V beta 3, and alpha 5 beta 1 integrins. J Biol Chem 269:20233–20238

    CAS  PubMed  Google Scholar 

  21. Cai W, Chen X (2008) Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat Protoc 3:89–96. https://doi.org/10.1038/nprot.2007.478

    Article  CAS  PubMed  Google Scholar 

  22. Shi W, Bartlett JS (2003) RGD inclusion in VP3 provides Adeno-associated virus type 2 (AAV2)-based vectors with a heparan sulfate-independent cell entry mechanism. Mol Ther 7:515–525. https://doi.org/10.1016/S1525-0016(03)00042-X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Deutsche Forschungsgemeinschaft Grant GO565/17-1 and Teilprojekt 7 of Research Unit (Forschergruppe) 1075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Goepferich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Haunberger, A., Goepferich, A. (2019). Nanoparticles Targeting Retinal and Choroidal Capillaries In Vivo. In: Weber, B.H.F., Langmann, T. (eds) Retinal Degeneration. Methods in Molecular Biology, vol 1834. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8669-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8669-9_25

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8668-2

  • Online ISBN: 978-1-4939-8669-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics