Skip to main content

Conduct and Quality Control of Differential Gene Expression Analysis Using High-Throughput Transcriptome Sequencing (RNASeq)

  • Protocol
Book cover Retinal Degeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1834))

Abstract

High-throughput transcriptome sequencing (RNASeq) represents one of the most comprehensive and scalable methods to analyze global gene expression. It allows for absolute quantification of gene expression and also enables the discovery of novel transcripts and alternatively spliced isoforms. This chapter provides hand-on tools and a step-by-step procedure to analyze RNASeq data from punctures of two different retinal tissues (retina and RPE-choroid-sclera) at two different locations (periphery and macular region) from eight individuals. The procedure described in this chapter will use various programs from the free, open-source Tuxedo Suite software package to analyze sequencing data and to ascertain genes that are differentially expressed between retina and RPE-choroid-sclera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11:1650–1667

    Article  CAS  Google Scholar 

  2. Tian L, Kazmierkiewicz KL, Bowman AS, Li M, Curcio CA, Stambolian DE (2015) Transcriptome of the human retina, retinal pigmented epithelium and choroid. Genomics 105:253–264

    Article  CAS  Google Scholar 

  3. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T et al (2015) Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12:115–121

    Article  CAS  Google Scholar 

  4. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M et al (2013) NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res 41:D991–D995

    Article  CAS  Google Scholar 

  5. Hansen KD, Brenner SE, Dudoit S (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 38:e131–e131

    Article  Google Scholar 

  6. Williams CR, Baccarella A, Parrish JZ, Kim CC (2016) Trimming of sequence reads alters RNA-Seq gene expression estimates. BMC Bioinformatics 17:103

    Article  Google Scholar 

  7. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25

    Article  Google Scholar 

  8. Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by a grant from the Deutsche Forschungsgemeinschaft (GR 5065/1-1) and by the institutional budget for Research and Teaching from the Free State of Bavaria (Titel 73).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Grassmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Grassmann, F. (2019). Conduct and Quality Control of Differential Gene Expression Analysis Using High-Throughput Transcriptome Sequencing (RNASeq). In: Weber, B.H.F., Langmann, T. (eds) Retinal Degeneration. Methods in Molecular Biology, vol 1834. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8669-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8669-9_2

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8668-2

  • Online ISBN: 978-1-4939-8669-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics