Skip to main content

Retinal Fundus Imaging in Mouse Models of Retinal Diseases

  • Protocol
Retinal Degeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1834))

Abstract

The development of in vivo retinal fundus imaging in mice has opened a new research horizon, not only in ophthalmic research. The ability to monitor the dynamics of vascular and cellular changes in pathological conditions, such as neovascularization or degeneration, longitudinally without the need to sacrifice the mouse, permits longer observation periods in the same animal. With the application of the high-resolution confocal scanning laser ophthalmoscopy in experimental mouse models, access to a large spectrum of imaging modalities in vivo is provided. Recently developed optical coherence tomography angiography allows even noninvasive in vivo blood flow analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Leeuwen R et al (2003) Epidemiology of age-related maculopathy: a review. Eur J Epidemiol 18:845–854

    PubMed  Google Scholar 

  2. Grossniklaus HE et al (2010) Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res 29:500–519

    PubMed  PubMed Central  Google Scholar 

  3. Barber AJ (2003) A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuro-Psychopharmacol Biol Psychiatry 27:283–290

    CAS  Google Scholar 

  4. Joussen AM et al (2003) Molecular mechanisms of vasculogenesis and angiogenesis. What regulates vascular growth? Ophthalmologe 100:284–291

    CAS  PubMed  Google Scholar 

  5. Spaide RF (2015) Optical coherence tomography angiography signs of vascular Abnormalization with Antiangiogenic therapy for Choroidal neovascularization. Am J Ophthalmol 160:6–16

    PubMed  Google Scholar 

  6. Sharp PF, Manivannan A (1997) The scanning laser ophthalmoscope. Phys Med Biol 42:951–966

    CAS  PubMed  Google Scholar 

  7. Paques M et al (2007) Panretinal, high-resolution color photography of the mouse fundus. Invest Ophthalmol Vis Sci 48:2769–2774

    PubMed  Google Scholar 

  8. Bermudez MA et al (2011) Time course of cold cataract development in anesthetized mice. Curr Eye Res 36:278–284

    CAS  PubMed  Google Scholar 

  9. Terman A (2006) Catabolic insufficiency and aging. Ann N Y Acad Sci 1067:27–36

    CAS  PubMed  Google Scholar 

  10. Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33:611–619

    CAS  PubMed  Google Scholar 

  11. Seehafer SS, Pearce DA (2006) You say lipofuscin, we say ceroid: defining autofluorescent storage material. Neurobiol Aging 27:576–588

    CAS  PubMed  Google Scholar 

  12. Eldred GE et al (1982) Lipofuscin: resolution of discrepant fluorescence data. Science 216:757–759

    CAS  PubMed  Google Scholar 

  13. Marmorstein AD et al (2002) Spectral profiling of autofluorescence associated with lipofuscin, Bruch's membrane, and sub-RPE deposits in normal and AMD eyes. Invest Ophthalmol Vis Sci 43:2435–2441

    PubMed  Google Scholar 

  14. Eldred GE, Lasky MR (1993) Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 361:724–726

    CAS  PubMed  Google Scholar 

  15. Sparrow JR et al (1999) A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest Ophthalmol Vis Sci 40:2988–2995

    CAS  PubMed  Google Scholar 

  16. Schmitz-Valckenberg S et al (2008) Fundus autofluorescence imaging: review and perspectives. Retina 28:385–409

    PubMed  Google Scholar 

  17. Bridges CD (1977) Rhodopsin regeneration in rod outer segments: utilization of 11-cis retinal and retinol. Exp Eye Res 24:571–580

    CAS  PubMed  Google Scholar 

  18. Jaffe GJ, Caprioli J (2004) Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol 137:156–169

    PubMed  Google Scholar 

  19. Alnawaiseh M et al (2016) OCT angiography in the mouse: a novel evaluation method for vascular pathologies of the mouse retina. Exp Eye Res 145:417–423

    CAS  PubMed  Google Scholar 

  20. Quaranta-El Maftouhi M et al (2015) Chronic central serous chorioretinopathy imaged by optical coherence tomographic angiography. Am J Ophthalmol 160:581–587 e581

    PubMed  Google Scholar 

  21. Hawes NL et al (1999) Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes. Mol Vis 5:22

    CAS  PubMed  Google Scholar 

  22. Chang B et al (2002) Retinal degeneration mutants in the mouse. Vis Res 42:517–525

    CAS  PubMed  Google Scholar 

  23. Eter N et al (2008) In vivo visualization of dendritic cells, macrophages, and microglial cells responding to laser-induced damage in the fundus of the eye. Invest Ophthalmol Vis Sci 49:3649–3658

    PubMed  Google Scholar 

  24. Tobe T et al (1998) Evolution of neovascularization in mice with overexpression of vascular endothelial growth factor in photoreceptors. Invest Ophthalmol Vis Sci 39:180–188

    CAS  PubMed  Google Scholar 

  25. Smith LE et al (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:101–111

    CAS  Google Scholar 

  26. Spilsbury K et al (2000) Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am J Pathol 157:135–144

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmack I et al (2009) Modulation of choroidal neovascularization by subretinal injection of retinal pigment epithelium and polystyrene microbeads. Mol Vis 15:146–161

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shen D et al (2006) Exacerbation of retinal degeneration and choroidal neovascularization induced by subretinal injection of Matrigel in CCL2/MCP-1-deficient mice. Ophthalmic Res 38:71–73

    CAS  PubMed  Google Scholar 

  29. Giove TJ et al (2009) Increased neuronal nitric oxide synthase activity in retinal neurons in early diabetic retinopathy. Mol Vis 15:2249–2258

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu SS et al (2011) Wld (S) protects against peripheral neuropathy and retinopathy in an experimental model of diabetes in mice. Diabetologia 54(9):2440–2450

    CAS  PubMed  Google Scholar 

  31. Kern TS et al (2010) Validation of structural and functional lesions of diabetic retinopathy in mice. Mol Vis 16:2121–2131

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Larina IV et al (2009) A membrane associated mCherry fluorescent reporter line for studying vascular remodeling and cardiac function during murine embryonic development. Anat Rec (Hoboken) 292:333–341

    Google Scholar 

  33. Poche RA et al (2009) The Flk1-myr::mCherry mouse as a useful reporter to characterize multiple aspects of ocular blood vessel development and disease. Dev Dyn 238:2318–2326

    PubMed  PubMed Central  Google Scholar 

  34. Jung S et al (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuziel WA et al (1997) Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci U S A 94:12053–12058

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ambati J et al (2003) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9:1390–1397

    CAS  PubMed  Google Scholar 

  37. Tuo J et al (2007) Murine ccl2/cx3cr1 deficiency results in retinal lesions mimicking human age-related macular degeneration. Invest Ophthalmol Vis Sci 48:3827–3836

    PubMed  PubMed Central  Google Scholar 

  38. Takeda A et al (2009) CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 460:225–230

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Malek G et al (2005) Apolipoprotein E allele-dependent pathogenesis: a model for age-related retinal degeneration. Proc Natl Acad Sci U S A 102:11900–11905

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Okamoto N et al (1997) Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am J Pathol 151:281–291

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Heckenlively JR et al (2003) Mouse model of subretinal neovascularization with choroidal anastomosis. Retina 23:518–522

    PubMed  Google Scholar 

  42. Won J et al (2011) Mouse model resources for vision research. J Ophthalmol 2011:391384

    PubMed  Google Scholar 

  43. Huber G et al (2009) Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci 50:5888–5895

    PubMed  PubMed Central  Google Scholar 

  44. Kohler K et al (1997) Animal models for retinitis pigmentosa research. Klin Monatsbl Augenheilkd 211:84–93

    CAS  PubMed  Google Scholar 

  45. Van Hooser JP et al (2000) Rapid restoration of visual pigment and function with oral retinoid in a mouse model of childhood blindness. Proc Natl Acad Sci U S A 97:8623–8628

    PubMed  PubMed Central  Google Scholar 

  46. Seeliger MW et al (2005) In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy. Vis Res 45:3512–3519

    PubMed  Google Scholar 

  47. de la Cera EG et al (2006) Optical aberrations in the mouse eye. Vis Res 46:2546–2553

    PubMed  Google Scholar 

  48. Marneros AG et al (2007) Endogenous endostatin inhibits choroidal neovascularization. FASEB J 21:3809–3818

    CAS  PubMed  Google Scholar 

  49. Sheets KG et al (2010) Neuroprotectin D1 attenuates laser-induced choroidal neovascularization in mouse. Mol Vis 16:320–329

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Palejwala NV et al (2015) Detection of nonexudative Choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography. Retina 35:2204–2211

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Eter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Alex, A.F., Alnawaiseh, M., Heiduschka, P., Eter, N. (2019). Retinal Fundus Imaging in Mouse Models of Retinal Diseases. In: Weber, B.H.F., Langmann, T. (eds) Retinal Degeneration. Methods in Molecular Biology, vol 1834. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8669-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8669-9_17

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8668-2

  • Online ISBN: 978-1-4939-8669-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics