Skip to main content

Generation and Analysis of Xenopus laevis Models of Retinal Degeneration Using CRISPR/Cas9

  • Protocol
Retinal Degeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1834))

Abstract

Xenopus laevis have proven to be a useful system for rapid generation and analysis of transgenic models of human retinal disease. However, experimental approaches in this system were limited by lack of a robust knockdown or knockout technology. Here we describe a protocol for generation of Cas9-edited X. laevis embryos. The technique introduces point mutations into the genome of X. laevis resulting in in-frame and out-of-frame insertions and deletions that allow modeling of both dominant and recessive human diseases and efficiently generates gene knockdown and knockout. Our techniques can produce high-frequency gene editing in X. laevis, permitting analysis in the F0 generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  Google Scholar 

  2. Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  3. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  4. Feehan JM et al (2017) Modeling dominant and recessive forms of retinitis Pigmentosa by editing three rhodopsin-encoding genes in Xenopus Laevis using Crispr/Cas9. Sci Rep 7:6920

    Article  Google Scholar 

  5. Wang F et al (2015) Targeted gene disruption in Xenopus laevis using CRISPR/Cas9. Cell Biosci 5:15

    Article  Google Scholar 

  6. Tandon P, Conlon F, Furlow JD, Horb ME (2017) Expanding the genetic toolkit in Xenopus: approaches and opportunities for human disease modeling. Dev Biol 426(2):325–335. https://doi.org/10.1016/j.ydbio.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  7. Wang H et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  Google Scholar 

  8. Low BE, Kutny PM, Wiles MV (2016) Methods Mol Biol 1438:19–53

    Article  CAS  Google Scholar 

  9. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  Google Scholar 

  10. Hwang WY et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  Google Scholar 

  11. Sander JD et al (2010) ZiFiT (zinc finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res 38:W462–W468

    Article  CAS  Google Scholar 

  12. Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44:W272–W276

    Article  CAS  Google Scholar 

  13. Session AM et al (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:336–343

    Article  CAS  Google Scholar 

  14. Matsuda Y et al (2015) A new nomenclature of Xenopus laevis chromosomes based on the phylogenetic relationship to Silurana/Xenopus tropicalis. Cytogenet Genome Res 145:187–191

    Article  Google Scholar 

  15. Evans BJ (2008) Genome evolution and speciation genetics of clawed frogs (Xenopus and Silurana). Front Biosci 13:4687–4706

    Article  CAS  Google Scholar 

  16. Pearl E, Morrow S, Noble A, Lerebours A, Horb M, Guille M (2017) An optimized method for cryogenic storage of Xenopus sperm to maximise the effectiveness of research using genetically altered frogs. Theriogenology 92:149–155

    Article  Google Scholar 

  17. Tam BM, Lai CC-L, Zong Z, Moritz OL (2013) Generation of transgenic X. laevis models of retinal degeneration. Methods Mol Biol 935:113–125

    Article  CAS  Google Scholar 

  18. Vouillot L, Thélie A, Pollet N (2015) Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda) 5:407–415

    Article  CAS  Google Scholar 

  19. Nielsen H (2011) Working with RNA. Methods Mol Biol (Clifton, NJ) 703:15–28

    Article  CAS  Google Scholar 

  20. Moreno-Mateos MA, Vejnar CE, Beaudoin J-D, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nature Methods 12 (10):982–988

    Article  CAS  Google Scholar 

  21. Bell J (2008) A simple way to treat PCR products prior to sequencing using ExoSAP-IT. BioTechniques 44:834

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada and the Foundation Fighting Blindness (Canada). B630N antibody was a gift of Dr. W. Clay Smith.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orson L. Moritz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Feehan, J.M., Stanar, P., Tam, B.M., Chiu, C., Moritz, O.L. (2019). Generation and Analysis of Xenopus laevis Models of Retinal Degeneration Using CRISPR/Cas9. In: Weber, B.H.F., Langmann, T. (eds) Retinal Degeneration. Methods in Molecular Biology, vol 1834. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8669-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8669-9_14

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8668-2

  • Online ISBN: 978-1-4939-8669-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics