Skip to main content

Use of RAPTR-SV to Identify SVs from Read Pairing and Split Read Signatures

  • Protocol
  • First Online:
Copy Number Variants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1833))

Abstract

High-throughput short read sequencing technologies are still the leading cost-effective means of assessing variation in individual samples. Unfortunately, while such technologies are eminently capable of detecting single nucleotide polymorphisms (SNP) and small insertions and deletions, the detection of large copy number variants (CNV) with these technologies is prone to numerous false positives. CNV detection tools that incorporate multiple variant signals and exclude regions of systemic bias in the genome tend to reduce the probability of false positive calls and therefore represent the best means of ascertaining true CNV regions. To this end, we provide instructions and details on the use of the RAPTR-SV CNV detection pipeline, which is a tool that incorporates read-pair and split-read signals to identify high confidence CNV regions in a sequenced sample. By combining two different structural variant (SV) signals in variant calling, RAPTR-SV enables the easy filtration of artifact CNV calls from large datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Korbel JO, Urban AE, Affourtit JP et al (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science 318:420–426. https://doi.org/10.1126/science.1149504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Chen K, Wallis JW, McLellan MD et al (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods 6:677–681. https://doi.org/10.1038/nmeth.1363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hormozdiari F, Hajirasouliha I, Dao P et al (2010) Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery. Bioinformatics 26:i350–i357. https://doi.org/10.1093/bioinformatics/btq216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Korbel J, Abyzov A, Mu X et al (2009) PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol 10:R23. https://doi.org/10.1186/gb-2009-10-2-r23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ye K, Schulz MH, Long Q et al (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25:2865–2871. https://doi.org/10.1093/bioinformatics/btp394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Handsaker RE, Korn JM, Nemesh J, McCarroll SA (2011) Discovery and genotyping of genome structural polymorphism by sequencing on a population scale. Nat Genet 43:269–276. https://doi.org/10.1038/ng.768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Layer RM, Chiang C, Quinlan AR, Hall IM (2014) LUMPY: a probabilistic framework for structural variant discovery. Genome Biol 15:R84. https://doi.org/10.1186/gb-2014-15-6-r84

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bickhart DM, Hutchison JL, Xu L et al (2015) RAPTR-SV: a hybrid method for the detection of structural variants. Bioinformatics 31:2084–2090. https://doi.org/10.1093/bioinformatics/btv086

    Article  PubMed  CAS  Google Scholar 

  9. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hach F, Hormozdiari F, Alkan C et al (2010) mrsFAST: a cache-oblivious algorithm for short-read mapping. Nat Methods 7:576–577. https://doi.org/10.1038/nmeth0810-576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hach F, Sarrafi I, Hormozdiari F et al (2014) mrsFAST-ultra: a compact, SNP-aware mapper for high performance sequencing applications. Nucleic Acids Res 42:W494–W500. https://doi.org/10.1093/nar/gku370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zhang C-Z, Spektor A, Cornils H et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522:179–184. https://doi.org/10.1038/nature14493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hormozdiari F, Alkan C, Eichler EE, Sahinalp SC (2009) Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Res 19:1270–1278. https://doi.org/10.1101/gr.088633.108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. English AC, Richards S, Han Y et al (2012) Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS One 7:e47768. https://doi.org/10.1371/journal.pone.0047768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek M. Bickhart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bickhart, D.M. (2018). Use of RAPTR-SV to Identify SVs from Read Pairing and Split Read Signatures. In: Bickhart, D. (eds) Copy Number Variants. Methods in Molecular Biology, vol 1833. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8666-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8666-8_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8665-1

  • Online ISBN: 978-1-4939-8666-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics